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Preface

This book covers many of the diverse methods in applied probability and
statistics for students aspiring to careers in insurance, actuarial science and
finance. It should also serve as a valuable text and reference for the insurance
analyst who commonly uses probabilistic and statistical techniques in prac-
tice. The reader will build on an existing basic knowledge of probability and
statistics and establish a solid and thorough understanding of these methods,
but it should be pointed out that the emphasis here is on the wide variety of
practical situations in insurance and actuarial science where these techniques
may be used. In particular, applications to many areas of general insurance,
including models for losses and collective risk, reserving and experience rat-
ing, credibility estimation, and measures of security for risk are emphasized.
The text also provides relevant and basic introductions to generalized linear
models, decision-making and game theory.

There are eight chapters on a variety of topics in the book. Although
there are obvious links between many of the chapters, some of them may be
studied quite independently of the others. Chapter 1 stands on its own, but
at the same time provides a good introduction to claims reserving via the
deterministic chain ladder technique and related methods. Chapters 2, 3 and
4 are closely linked, studying loss distributions, risk models in a fixed period
of time, and then a more stochastic approach studying surplus processes and
the concept of ruin. Chapter 5 provides a comprehensive introduction to the
concept of credibility, where collateral and sample information are brought
together to provide reasonable methods of estimation. The Bayesian approach
to statistics plays a key role in the establishment of these methods. The final
three chapters are quite independent of the previous chapters, but provide
solid introductions to methods that any insurance analyst or actuary should
know. Experience rating via no claim discount schemes for motor insurance
in Chapter 6 provides an interesting application of Markov chain methods.
Chapter 7 introduces the powerful techniques of generalized linear models,
while Chapter 8 includes a basic introduction to decision and game theory.

There are many worked examples and problems in each of the chapters,
with a particular emphasis being placed on those of a more numerical and
practical nature. Solutions to selected problems are given in an appendix.
There are also appendices on probability distributions, Bayesian statistics and
basic tools in probability and statistics. Readers of the text are encouraged
(in checking examples and doing problems) to make use of the very versatile
and free statistical software package R.
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viii PREFACE

The material for this book has emerged from lecture notes prepared for
various courses in actuarial statistics given at University College Dublin (The
National University of Ireland – Dublin) over the past 15 years, both at the
upper undergraduate and first year postgraduate level. I am grateful to all
my colleagues in Statistics and Actuarial Science at UCD for their assistance,
but particularly to Marie Doyle, Gareth Colgan, John Connolly and David
Williams. The Department of Statistics at Trinity College Dublin kindly
provided me with accommodation during a sabbatical year used to prepare
this material. I also wish to acknowledge encouragement from the Society
of Actuaries in Ireland, which has been supportive of both this venture and
our program in Actuarial Science at UCD since its inception in 1991. Patrick
Grealy in particular provided very useful advice and examples on the topic of
run-off triangles and reserving. John Caslin, Paul Duffy and Shane Whelan
were helpful with references and data.

I have been fortunate to have had many excellent students in both statistics
and actuarial science over the years, and I thank them for the assistance and
inspiration they have given me both in general and in preparing this text.
Particular thanks go to John Ferguson, Donal McMahon, Santos Faundez
Sekirkin, Adrian O’Hagan and Barry Maher. Many others were helpful in
reading drafts and revisions, including Una Scallon, Kevin McDaid and Rob
Stapleton. Finally, I wish to thank my family and many friends who along
the path to completing this book have been a constant source of support and
encouragement.



Introduction

In spite of the stochastic nature of most of this book, the first chapter is
rather deterministic in nature, and deals with Claims Reserving and Pricing
with Run-off Triangles. In running-off a triangle of claims experience, one
studies how claims arising from different years have developed, and then makes
use of ratios (development factors and/or grossing-up factors) to predict how
future claims will evolve. Methods for dealing with past and future inflation
in estimating reserves for future claims are considered. The average cost per
claim method is a popular tool which takes account of the numbers of claims
as well as the amounts. The Bornhuetter–Ferguson method uses additional
information such as expected loss ratios (losses relative to premiums) together
with the chain ladder technique to estimate necessary reserves. Delay triangles
of claims experience can also be useful in pricing new business.

Modeling the size of a claim or loss is of crucial importance for an insurer.
In the chapter on Loss Distributions, we study many of the classic probabil-
ity distributions used to model losses in insurance and finance, such as the
exponential, gamma, Weibull, lognormal and Pareto. Particular attention is
paid to studying the (right) tail of the distribution, since it is important to
not underestimate the size (and frequency) of large losses. Given a data set
of claims, there is often a natural desire to fit a probability distribution with
reasonably tractable mathematical properties to such a data set. Exploratory
data analysis can be very useful in searching for a good fit, including basic
descriptive statistics (such as the mean, median, mode, standard deviation,
skewness, kurtosis and various quantiles) and plots. The method of maximum
likelihood is often used to estimate parameters of possible distributions, and
various tests may be used to assess the fit of a proposed model (for exam-
ple, the Kolmogorov–Smirnoff, and χ2 goodness-of-fit). Often one may find
that a mixture of various distributions may be appropriate to model losses
due to the varying characteristics of both the policies and policyholders. We
also consider the impact of inflation, deductibles, excesses and reinsurance
arrangements on the amount of a loss a company is liable for.

Following on from a study of probability distributions for losses and claims,
the chapter on Risk Theory investigates various models for the risk consisting
of the total or aggregate amount of claims S payable by a company over a
relatively short and fixed period of time. Emphasis is placed on two types of
models for the aggregate claims S. In the collective risk model for S, claims
are aggregated as they are reported during the time period under consider-
ation, while in the individual risk model there is a term for each individual

ix



x INTRODUCTION

(or policyholder) irrespective of whether the individual makes a claim or not.
Extensive statistical properties of these models are established (including the
useful recursion formula of Panjer for the exact distribution of S) as well as
methods of approximating the distribution of S. The models can inform an-
alysts about decisions regarding expected profits, premium loadings, reserves
necessary to ensure (with high probability) profitability, and the impact of
reinsurance and deductibles.

The chapter on Ruin Theory follows the treatment of risk but the emphasis
is put on monitoring the surplus (stochastic) process of a portfolio of policies
throughout time. The surplus process takes account of initial reserves, net
premium income (including, for example, reinsurance payments), and claim
payments on a regular basis, and in particular focuses on the possibility of
ruin (a negative surplus). A precise expression for the probability of ruin does
not exist in most situations, but useful surrogates for this measure of security
are provided by Lundberg’s upper bound and the adjustment coefficient. An
emphasis is placed on understanding how one may modify aspects of the
process, such as the claim rate, premium loadings, typical claim size and
reinsurance arrangements, in order to adjust the security level.

Credibility Theory deals with developing a basis for reviewing and revis-
ing premium rates in light of current claims experience (data in hand) and
other possibly relevant information from other sources (collateral informa-
tion). The constant challenge of estimating future claim numbers and/or ag-
gregate claims is done in various ways through a credibility premium formula
using a credibility factor Z for weighting the data in hand. In the classical
approach to credibility theory, one addresses the question of how much data is
needed for full credibility (Z = 1), and what to do otherwise. In the Bayesian
approach the collateral information is summarized by prior information and
the credibility estimate is determined from the posterior distribution result-
ing from incorporating sample (current) claims information. If the posterior
estimate is to be linear in the sample information, one uses the greatest accu-
racy approach to credibility, while if one needs to use the sample information
to estimate prior parameters then one uses the Empirical Bayes approach to
credibility theory. The chapter on Credibility Theory presents in a unified
manner these different approaches to estimating future claims and numbers!

No Claim Discount (NCD) schemes (sometimes called Bonus-Malus sys-
tems) are experience rating systems commonly used in European motor insur-
ance. They attempt to create homogeneous groups of policyholders whereby
those drivers with bad claims experience pay higher premiums than those
who have good records. The theory is that they also reduce the number of
small claims, and lead to safer driving because of the penalties associated with
making claims. NCD schemes provide a very interesting application of dis-
crete Markov chains, and convergence properties of the limiting distributions
for the various (discount) states give interesting insights into the stability of
premium income.

Modeling relationships between various observations (responses) and vari-



INTRODUCTION xi

ables is the essence of most statistical research and analysis. Constructing
interpretable models for connecting (or linking) such responses to variables
can often give one much added insight into the complexity of the relationship
which may often be hidden in a huge amount of data. For example, in what
way is the size of an employer liability claim related to the personal charac-
teristics of the employee (age, gender, salary) and the working environment
(safety standards, hours of work, promotional prospects)? In 1972 Nelder and
Wedderburn developed a theory of generalized linear models (GLM) which
unified much of the existing theory of linear modeling, and broadened its
scope to a wide class of distributions. The chapter on Generalized Linear
Models begins with a review of normal linear models. How generalized linear
models extend the class of general linear models to a class of distributions
known as exponential families and the important concept of a link function
are discussed. Several examples are given treating estimation of parameters,
the concept of deviance, residual analysis and goodness-of-fit.

All around us, and in all aspects of life, decisions continually need to be
made. We are often the decision makers, working as individuals or as part of
team. The decisions may be of a personal or business nature, and often enough
they may be both! The action or strategy which a decision maker ultimately
takes will of course depend on the criterion adopted, and in any given situation
there may be several possible criteria to consider. In the chapter on Decision
and Game Theory, an introduction to the basic elements of zero-sum two-
person games is given. Examples are also given of variable-sum games and
the concept of a Nash equilibrium. In the treatment of decision theory we
concentrate on the minimax and Bayes criteria for making decisions. A brief
introduction to utility theory gives one an insight into the importance of
realizing the existence of value systems which are not strictly monetary in
nature.

Philip J. Boland

Dublin

September 2006
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1

Claims Reserving and Pricing with Run-Off
Triangles

1.1 The evolving nature of claims and reserves

In general insurance, claims due to physical damage (to a vehicle or building)
or theft are often reported and settled reasonably quickly. However, in other
areas of general insurance, there can be considerable delay between the time
of a claim-inducing event, and the determination of the actual amount the
company will have to pay in settlement. When an incident leading to a claim
occurs, it may not be reported for some time. For example, in employer liabil-
ity insurance, the exposure of an employee to a dangerous or toxic substance
may not be discovered for a considerable amount of time. In medical malprac-
tice insurance, the impact of an erroneous surgical procedure or mistakenly
prescribed drug may not be evident for months, or in some cases years. In
other situations, a claim may be reported reasonably soon after an incident,
but a considerable amount of time may pass before the actual extent of the
damage is determined. In the case of an accident the incident may be quickly
reported, but it may be some time before it is determined actually who is
liable and to what extent. In some situations, one might have to wait for the
outcome of legal action before damages can be properly ascertained.

An insurance company needs to know on a regular basis how much it should
be setting aside in reserves in order to handle claims arising from incidents
that have already occurred, but for which it does not yet know the full extent
of its liability. Claims arising from incidents that have already occurred but
which have not been reported to the insurer are termed IBNR (Incurred But
Not Reported) claims, and a reserve set aside for these claims is called an IBNR
reserve. Claims that have been reported but for which a final settlement has
not been determined are called outstanding claims∗. An assessor may make
interim payments on a claim (say 5,000 is paid immediately and a further
15,000 at a later stage), thus a claim remains open and outstanding until
it has been settled and closed. Incurred claims are those which have been

∗Other terms sometimes used are open claims or IBNER claims (Incurred But Not Enough
Reported).
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2 CLAIMS RESERVING AND RUN-OFF TRIANGLES

already paid, or which are outstanding. Reserves for those claims that have
been reported, but where a final payment has not been paid, are called case
reserves.

In respect of claims that occur (or originate) in any given accounting or
financial year, ultimate losses at any point in time may be estimated as the
sum of paid losses, case reserves and IBNR reserves. Estimated incurred
claims or losses are the case reserves plus paid claims, while total reserves
are the IBNR reserves plus the case reserves. Of course, in practice one
usually sets aside combined reserves for claims originating in several different
(consecutive) years.

Claims reserving is a challenging exercise in general insurance! One should
never underestimate the knowledge and intuition that an experienced claims
adjuster makes use of in establishing case reserves and estimating ultimate
losses. However, mathematical models and techniques can also be very useful,
giving the added advantage of laying a basis for simulation.

In order to give a flavor for the type of problem one is trying to address in
claims reserving, consider the triangular representation of cumulative incurred
claims given in Table 1.1 for a household contents insurance portfolio. The
origin year refers to the year in which the incident giving rise to a claim
occurred, and the development year refers to the delay in reporting relative
to the origin year. For example, incremental claims of (105,962 − 50,230) =
55,732 were made in 2001 in respect of claims originating in 2000 (hence
delayed one year). Of course, one could equivalently present the data using
incremental claims instead of cumulative claims. This can be particularly
useful when one wants to take account of inflation and standardize payments
in some way. Given that the amounts past the first column (development year
0) are indicators of delayed claims, this type of triangular representation of
the claims experience is often called a delay triangle. Note the significance
of the diagonals (those going from the lower left to the upper right) in this
delay triangle. For example, the diagonal reading (50,230; 101,093; 108,350)
represents cumulative claims for this portfolio at the end of year 2000 for the
origin years (2000, 1999, 1998), respectively.

In some cases, the origin year might refer to a policy year, or some other
accounting or financial year (in this example, it refers to a calendar year).
The term accident year is commonly used in place of origin year, given the
extensive historical use of triangular data of this type in motor insurance.
The use of months or quarters may also be used in place of years depending
on the reporting procedures of a company. There are perhaps many questions
which a company would like answered with respect to information of this type,
and certainly one would be to determine what reserves it should set aside at
the end of 2002 to handle forthcoming claim payments in respect of incidents
originating in the period 1998 − 2002. In short, how might one run-off this
triangle?

Of course any good analyst would question the quality of the available
data, and make use of any additional information at hand. For example, in
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TABLE 1.1

Cumulative incurred claims in a household contents
insurance portfolio.

Development year
Origin year 0 1 2 3 4

1998 39,740 85,060 108,350 116,910 124,588
1999 47,597 101,093 128,511 138,537
2000 50,230 105,962 132,950
2001 50,542 107,139
2002 54,567

this situation is it fair to assume that all claims will be settled by the end
of the fourth development year for any origin year? If not, what provisions
should be made for this possibility? Can we make the assumption that the
way in which claims develop is roughly similar for those originating in different
years? Should inflation be taken into account? Is there information at hand
with respect to the number of claims reported in each of these years (is there
a delay triangle for reported claim numbers)? What other knowledge have
we about losses incurred in the past (for example, with respect to premium
payments) for this type of business? In this chapter, we will discuss several
different ways of addressing the questions posed above. In most cases there
is no one definitive answer, and in many situations it is (perhaps best to
try several methods to get a reasonable overall estimate of the reserves that
should be held.

Certainly one of the most frequently used techniques for estimating reserves
is the chain ladder method. In this method, one looks at how claims arising
from different origin (or cohort) years have developed over subsequent devel-
opment years, and then use relevant ratios (for example, development factors
or grossing-up factors) to predict how future claims from these years will
evolve. There are many ways in which one might define a development factor
for use in projecting into the future. Generally speaking, it will be some ratio
(> 1) based on given data which will be used as a multiplier to estimate the
progression into the future between consecutive or possibly many years.

The use of grossing-up factors to project into the future is similar and in
reality dual to the use of development factors. A grossing-up factor is usually
(but not necessarily) a proportion (< 1) representing that part of the ultimate
(or next year’s) estimated cumulative losses which have been incurred or paid
to date. Consider, for example, the progression or development of cumulative
claims in a portfolio of policies from year 2003 to 2004. We might use a
development factor of d = 11/10 to estimate how claims will evolve during
that one-year period – or, in other words, predict that cumulative claims at
the end of 2004 will be 1.1 times those at the end of 2003. Equivalently, we
might say that we expect cumulative claims to be grossed-up by a factor of
g = 10/11 by the end of year 2004. Note of course that g = 1/d. Whether one



4 CLAIMS RESERVING AND RUN-OFF TRIANGLES

uses development factors or grossing-up factors is often a matter of choice,
but in some situations this may be determined by the type of information
available.

How the chain ladder method is used to run-off a claims triangle is developed
in Section 1.2. In particular, the question of how to deal with past and fu-
ture inflation in estimating reserves is considered. The average cost per claim
method is a popular tool which is dealt with in Section 1.3. This method takes
account of the numbers of claims reported (and therefore may be useful for
estimating case reserves but not IBNR reserves). The Bornhuetter–Ferguson
method [7], which is developed in Section 1.4, uses additional information
such as loss ratios (losses relative to premiums) together with the chain lad-
der technique to estimate necessary reserves. We shall see that there is a
Bayesian flavor to the interpretation of the Bornhuetter–Ferguson estimate.
Delay triangles of claims experience can also be useful in pricing business,
and a detailed practical example of pricing an employer’s liability scheme is
discussed in Section 1.5. All of the above techniques are rather determinis-
tic in nature, and it seems natural to also consider statistical models which
would allow one to evaluate fitness, variability and basic assumptions better.
In Section 1.6 we mention very briefly the separation technique/model for
claims reserving.

1.2 Chain ladder methods

The chain ladder method for running off a delay triangle of claims is one
of the most fundamental tools of a general insurance actuary. The most
basic chain ladder method assumes that the pattern of developing claims
is reasonably similar over the different origin years. Before explaining this
method in detail, we return to the household contents claims data given in
Table 1.1. If one felt strongly that the pattern of how cumulative claims
developed for the origin year 1998 was representative of how they should
develop in other years, then it could be used as a basis for predictions. For
example, we note that cumulative claims for origin year 1998 increased by a
factor of (85,060/39,740) = 2.1404 in the first development year. We might
therefore predict a similar increase in claims for those originating in 2002 –
that is, we might estimate the cumulative incurred claims in 2003 for those
originating in 2002 to be 54,567 (2.140) = 116,796. In a similar manner, we
might estimate ultimate claims (assuming all claims are settled by the end of
development year 4) for those originating in 2002 to be

54,567
(

124,588
39,740

)
= 54,567

(
85,060
39,740

) (
108,350
85,060

) (
116,910
108,350

) (
124,588
116,910

)
= 54,567 (2.1404) (1.2738) (1.0790) (1.0657)
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= 171,072.

Here the numbers 2.1404, 1.2738, 1.0790, 1.0657 are the respective one-year
development ratios for the growth in incurred claims for those which actu-
ally originated in 1998.† Continuing in this way, we could run-off the claims
triangle of Table 1.1 based on these development ratios, and obtain the re-
sults (where estimates are in bold) in Table 1.2. An estimate of the reserves
which should be set aside for the forthcoming claim settlements in this port-
folio would therefore be (147,635 + 152,875 + 156,927 + 171,072)− (138,537 +
132,950 + 107,139 + 54,567) = 195,316.

TABLE 1.2

Estimated cumulative incurred claims for Table 1.1 using 1998
development ratios.

Development year
Origin year 0 1 2 3 4

1998 39,740 85,060 108,350 116,910 124,588
1999 47,597 101,093 128,511 138,537 147,635
2000 50,230 105,962 132,950 143,453 152,875
2001 50,542 107,139 136,474 147,256 156,927
2002 54,567 116,796 148,775 160,529 171,072

1.2.1 Basic chain ladder method

If we feel that claims development is reasonably stable over the years in
question, we could probably benefit from making use of the additional in-
formation which is available for the years 1999 − 2002 in making projec-
tions. For example, for the evolution of claims from year of origin to de-
velopment year 1, we have information from the four origin years 1998−2001.
The observed one-year development ratios for these years are, respectively,
2.1404, 2.1239, 2.1095 and 2.1198. Similarly, one may calculate other devel-
opment ratios for cumulative incurred (or paid if that is the case) claims
between development years with the results given in Table 1.3.

In order to predict the evolution of cumulative claims from year of origin
to development year 1 in forthcoming years, we might use some average of
the ratios (2.1404, 2.1239, 2.1095, 2.1198). One possibility would be to use a
straightforward arithmetic average of these ratios, which has some justification
in that it puts an equal weight on each of the years 1998 − 2001. More
commonly, however, one uses a weighted average where the weights for a year
are proportional to the origin year incurred claims. In other words, more

†Ratios such as these are also sometimes referred to as link ratios or development factors.
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TABLE 1.3

One-year development ratios for cumulative incurred
household contents claims by year of origin.

Development year
Origin year 0 → 1 1 → 2 2 → 3 3 → 4

1998 2.1404 1.2738 1.0790 1.0657
1999 2.1239 1.2712 1.0780
2000 2.1095 1.2547
2001 2.1198
2002

weight is put on a factor where larger claim amounts were incurred. This is
the technique used in the basic chain ladder method for running off a delay
triangle. Using the notation di|j to denote an estimate of the development
factor for cumulative claims from development year i to development year
j, the pooled estimate of the development factor d0|1 from year of origin to
development year 1 (that is, for the development 0 → 1) for our household
contents portfolio data would be:

d0|1 =
39,740(2.1404) + 47,597(2.1239) + 50,230(2.1095) + 50,542(2.1198)

(39,740 + 47,597 + 50,230 + 50,542)

=
85,060 + 101,093 + 105,962 + 107, 139

39,740 + 47,597 + 50,230 + 50,542
= 2.1225.

Note that d0|1 is the sum of the four entries in the column for development
year 1 divided by the corresponding elements for development year 0 of Table
1.1. In a similar fashion, we obtain estimates for the other development factors
of the form di|i+1, the results of which are given in Table 1.4.

TABLE 1.4

Pooled one-year development factors for
cumulative household contents claims.

d0|1 d1|2 d2|3 d3|4
2.1225 1.2660 1.0785 1.0657

In general, for j > i + 1, one would use di|j =
∏j−1

l=i dl|l+1 to estimate
development from year i to j. In this basic form of the chain ladder method,
one uses these pooled estimates for running off a delay triangle. For example,
our estimate of the claims incurred by the end of 2005 which originated in 2001
would be 107,139 (1.2660)(1.0785)(1.0657) = 155,885. Proceeding in this way,
one obtains the projected results given in Table 1.5. Estimated total reserves
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for the aggregate claims incurred by 2002 using the basic chain ladder method
would therefore be

(147,635 + 152,799 + 155,885 + 168,511)
−(138,537 + 132,950 + 107,139 + 54,567) = 191,637.

This is slightly less (3,679 = 195,316 − 191,637) than the estimated reserves
when using the development factors based on the origin year 1998 only! This
represents a difference of less than 2%, which is mainly explained by the fact
that the one-year development factors based only on the origin year 1998 are
in each case slightly larger than those determined by using information over
all of the years.

What is the best estimate in this case? There is no easy answer to a
question like this. However, the estimate using the pooled estimates of the
development factors makes use of all the information available at this stage,
and therefore is probably a safer method to use in general. On the other hand,
this assumes that the development of claims is reasonably stable over the years
being considered, and if for any reason this is in doubt one should modify the
estimate in an appropriate way. So far we have assumed that either inflation
is not a concern, or that the figures have already been appropriately adjusted.
In the next section, we shall consider a chain ladder method that adjusts for
inflation.

TABLE 1.5

Estimated cumulative incurred claims for household contents
claims using the basic chain ladder method.

Development year
Origin year 0 1 2 3 4

1998 39,740 85,060 108,350 116,910 124,588
1999 47,597 101,093 128,511 138,537 147,635
2000 50,230 105,962 132,950 143,382 152,799
2001 50,542 107,139 135,636 146,279 155,885
2002 54,567 115,816 146,621 158,126 168,511

An equivalent way of projecting cumulative claims is through the use of
grossing-up factors. In our household claims data, note that cumulative (in-
curred) claims of 116,910 at the end of development year 3 for those orig-
inating in 1998 are a (grossing-up) factor g3|4 = 116,910/124,588 = 0.9384
of the ultimate cumulative claims 124,588 at the end of development year 4.
A grossing-up factor for change from development year 2 to 3 could be de-
termined in several ways, and one possibility (corresponding to the pooling
of development factors presented above) would be a pooled estimate based
on the changes observed from origin years 1998 and 1999, that is, to use
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g2|3 = (108,350 + 128,511)/(116,910 + 138,537) = 0.9272. Proceeding in this
way by pooling information, one obtains the grossing-up factors given in Table
1.6. Note that for our procedure in this example we have gi|j = 1/di|j . One
may then use the grossing-up factors to run-off the cumulative claims table, in
this case obtaining the same results as in Table 1.5. Another possibility (and
one that is often used and illustrated later) is to use an arithmetic average of
the grossing-up estimates determined separately from the experience in origin
years 1998 and 1999. As mentioned previously, it is often a matter of prefer-
ence whether to use development or grossing-up factors, although in practice
both methods are frequently used. We will see in Section 1.4 that grossing-up
factors may be interpreted as credibility factors in the Bornhuetter–Ferguson
method for estimating reserves.

TABLE 1.6

Pooled one-year grossing-up factors for
incurred household contents claims.

g0|1 g1|2 g2|3 g3|4
0.4712 0.7899 0.9272 0.9384

Although the chain ladder technique is a deterministic method and not
necessarily based on a stochastic or statistical model, it is still advisable to
investigate how well this technique fits the known data. For each entry of
cumulative incurred claims in the original Table 1.1, we could use the pooled
estimates of the development factors to determine a fitted cumulative value
and make comparisons. It is, however, perhaps more enlightening to compare
increases in cumulative claims (or incremental claims) over the various devel-
opment years, and Table 1.7 gives the calculations for the household contents
claims portfolio.

Table 1.7 indicates that there is quite a good fit between the actual incurred
incremental claims and those predicted using the pooled development factors
from year of origin. Not surprisingly, in view of the comments made above
concerning the pooled development factors and those based on the origin year
1998 alone, the fitted values for 1998 are all slightly less than the actual values.

1.2.2 Inflation-adjusted chain ladder method

In the setting of reserves on the basis of information obtained from past years,
one should be cognizant of the fact that inflation may have affected the values
of claims. Incurred claims of 39,740 in 1998 might be worth considerably more
in 2002 prices, hence if we are to set aside reserves in 2002 for future claim
payments should we not make projections on the basis of comparable mone-
tary values? One should also bear in mind that inflation which affects claims
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TABLE 1.7

Actual and fitted values for increases in household contents
incurred claims.

Origin Development year
year Value 0 1 2 3 4

1998 Actual 39,740 45,320 23,290 8,560 7,678
Fitted 39,740 44,607 22,434 8,379 7,563

Difference -713 -856 -181 -115
% Difference -1.6 -3.7 -2.1 -1.5

1999 Actual 47,597 53,496 27,418 10,026
Fitted 47,597 53,426 26,870 10,035

Difference -70 -548 9
% Difference -0.13 -2.0 0.1

2000 Actual 50,230 55,732 26,988
Fitted 50,230 56,381 28,356

Difference 649 1368
% Difference 1.2 5.1

2001 Actual 50,542 56,597
Fitted 50,542 56,731

Difference 134
% Difference 0.2

might be quite different from inflation as reported in standard consumer price
indices. Changes in legislation might affect the way compensation entitle-
ments are determined, and therefore suddenly affect settlements in liability
claims. New safety standards might also affect the cost of both repairing and
replacing damaged property. In the inflation-adjusted chain ladder method,
we adjust the claims incurred in past years for inflation and convert them into
equivalent prices (say current prices). We then apply a chain ladder technique
(using development factors or grossing-up ratios) to run-off the delay triangle
of standardized cumulative claims.

Once again, we use the data on incurred claims in the household contents
insurance portfolio of Table 1.1. Suppose that yearly inflation over the four
years from mid-1998 until mid-2002 has been, respectively, 2%, 8%, 7% and
3%. As an approximation, we assume that claims in a particular year are on
the average incurred in the middle of the year. Table 1.8 gives the incremental
incurred claims in 2002 prices for this data. For example, in the origin year
1999, claims incurred in the year 2000 were 53,496 = 101,093− 47,597, which
in mid-2002 money is 58,958 = 53,496(1.07)(1.03).

Claims are then accumulated by year of origin and development, then
pooled development factors (which more than likely will be different from
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those determined on the data before inflation was taken into account) are cal-
culated, and the delay triangle can be run-off using these factors. The results
are given in Table 1.9, together with the development factors used. For exam-
ple, estimated cumulative claims from those originating in 2000 by the end of
year 2004 (in 2002 money) would be (55,358+57,404+26,988)(1.0693)(1.0562)
= 157,837. Total reserves that should be set aside for the future would then
be 174,950, which is considerably less (by 8.7%) than the necessary reserves
191,637 calculated without taking inflation into account. In this case had we
not taken into account inflation, one might easily have set aside too much in
2002 for reserves.

TABLE 1.8

Incremental incurred claims for household contents
claims of Table 1.1 in 2002 prices.

Development year
Origin year 0 1 2 3 4

1998 48,247 53,943 25,668 8,817 7,678
1999 56,653 58,958 28,241 10,026
2000 55,358 57,404 26,988
2001 52,058 56,597
2002 54,567

TABLE 1.9

Estimated cumulative incurred claims in 2002 prices using the chain ladder
method with inflation.

Origin Development year
year 0 1 2 3 4
1998 48,247 102,190 127,858 136,675 144,353
1999 56,653 115,611 143,852 153,878 162,522
2000 55,358 112,762 139,750 149,442 157,837
2001 52,058 108,655 135,246 144,625 152,749
2002 54,567 112,882 140,507 150,251 158,692
di|i+1 d0|1 = 2.0687 d1|2 = 1.2447 d2|3 = 1.0693 d3|4 = 1.0562
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1.3 The average cost per claim method

This technique for estimating reserves revolves around analyzing both claim
numbers and the average cost per claim as they develop over different origin
years. The idea is to study separately frequency as well as severity of claims
by using delay triangles for both claim numbers and average costs per claim,
then to run-off these triangles to obtain estimates of ultimate claim numbers
and mean costs. The results are then multiplied together to give estimates of
future payments, thereby determining the necessary reserves. The triangles
may be run-off by using the development factor tool introduced already with
the basic chain ladder method, but there are also other possibilities. In the
following example, we illustrate the use of grossing-up factors.

Example 1.1

Table 1.10 gives cumulative incurred claim amounts (C) in ($ 000′s) and claim
numbers (N) over a four-year period for a collection of large vehicle damage
claims. We would like to estimate reserves which should be set aside for future
payments on this business (i.e., arising out of claims from the given years of
origin). Let us assume the figures have already been adjusted for inflation.
We will also make the assumption that claims tail off after three years of
development for any origin year (e.g., we assume that no further claims arise
from 1999 other than the 63 already incurred), although we will return to this
point later in the example!

TABLE 1.10

Cumulative incurred claims (C) and numbers (N) for
large vehicle damage.

Development year
0 1 2 3

Origin year C N C N C N C N
1999 677 42 792 51 875 57 952 63
2000 752 45 840 54 903 59
2001 825 52 915 60
2002 892 59

Dividing cumulative claim amounts by claim numbers in Table 1.10 we
obtain Table 1.11, which gives the average size of an incurred claim up to
a given development year. For example, the average size or severity of an
incurred claim originating in 2000 by the end of 2001 is $15,560. We now
run-off both the triangles for average claim sizes and claim numbers, using
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TABLE 1.11

Average cumulative incurred claim size
for large vehicle damage.

Development year
Origin year 0 1 2 3

1999 16.12 15.53 15.35 15.11
2000 16.71 15.56 15.31
2001 15.87 15.25
2002 15.12

the grossing-up method.
We begin by running off the claim numbers. For this example, we shall

use the notation gN
i|j (respectively, gC

i|j) to denote a grossing-up factor from
development year i to development year j for claim numbers (average claim
size), and again note that there is no unique way to determine such factors.
Here we are mainly concerned with ultimate values (for predicting to the
ultimate - which in this case is the end of the third development year).

Considering the claim numbers in Table 1.10, we see that we have only
one estimate for the grossing-up factor from development year 2 to 3, namely
gN
2|3 = 57/63 = 0.90476, or in other words 57/gN

2|3 = 63. How about an
estimate for grossing-up claim numbers from development year 1 to 2? We
have the experience of both origin years 1999 and 2000, and we can use this
information in several ways. As suggested before, we might weight (pro-
portional to numbers of claims) the two estimates obtained from these two
years, but here we will use a straightforward arithmetic mean, that is, we use
gN
1|2 = [(51/57)+(54/59)]/2 = 0.90500. In a similar and consistent way we es-

timate gN
0|1 = [(42/51)+(45/54)+(52/60)]/3 = 0.84118. Using these grossing-

up factors, we could run-off the triangle of claim numbers to obtain estimates
for numbers of incurred claims over subsequent development years. In general
these can be obtained using gN

i|l =
∏l−1

j=i g
N
j|j+1, where l is the number of the

development year. Since here we are interested in predicting to the end of
development year 3, we have gN

1|3 = gN
1|2 g

N
2|3 = (0.90500)(0.90476) = 0.81881

and, similarly, gN
0|3 = 0.68876. Hence to predict the ultimate number of

claims originating in the year 2001 by the end of 2004 (end of development
year 3), we would gross-up 60 by gN

1|3 = 0.81881 to obtain the estimate of
60/(0.81881) = 73.28. Continuing in this way for other origin years, we ob-
tain the results in Table 1.12.

Next we use grossing-up factors to run-off the triangle of average claim
sizes given in Table 1.11. Note, however, that in this example, although both
incurred claim amounts and claim numbers increase with development years,
the average amount of an incurred claim is decreasing. In some situations
claims incurred later on are typically larger, but the opposite is the case here.
We proceed to determine grossing-up factors as with the claim numbers, but
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TABLE 1.12

Estimated ultimate number of claims: grossing-up
method for large vehicle damage.

Origin Development year i Ultimate
year 0 1 2 3 # claims

1999 42 51 57 63 63.00
2000 45 54 59 65.21
2001 52 60 73.28
2002 59 85.66

gN
i|3 0.68876 0.81881 0.90476 1

of course due to the fact that the average incurred claim size is decreasing,
our grossing-up factors here will in all cases exceed 1. The grossing-up factor
between development years 2 and 3 is gC

2|3 = 15.35/15.11 = 1.01587. For
the grossing-up factor between development years 1 and 2, we again use an
arithmetic average of what we have observed in origin years 1999 and 2000
to obtain gC

1|2 = [(15.53/15.35) + (15.56/15.31)]/2 = 1.01399. Similarly, one
obtains

gC
0|1 = [(16.12/15.53) + (16.71/15.56) + (15.87/15.25)]/3 = 1.05095

based on the experience in years 1999 − 2001. We could then use these fac-
tors to estimate the average cost of a claim originating in a given year at
the end of any development year. For example, the average size of a claim
originating in year 2001 at the end of 2003 is estimated to be 15.25/gC

1|2 =
(15.25/1.01399) = 15.04, and the estimate of the ultimate average size would
be 15.04/gC

2|3 = 15.04/1.01587 = 14.80. Estimates of ultimate average claim
sizes can, of course, be determined directly by using the ultimate grossing-up
factors. Hence, since

gC
0|3 = gC

0|1 g
C
1|2 g

C
2|3 = (1.05095) (1.01399) (1.01587) = 1.08256,

the estimate of the ultimate average claim size originating in 2002 is 13.97 =
15.12/1.08256. These results are presented in Table 1.13.

Finally, we can estimate the total amount ultimately payable for incurred
claims for each origin year by multiplying the predicted number of claims by
the average severity. In origin year 2001, for example, we expect to ultimately
pay (73.28)(14.80) = 1084.84. Summing over all years, we would expect to
pay in total about $4,215,620 since

(63)(15.11) + (65.21)(15.07) + (73.28)(14.80) + (85.66)(13.97) =
952 + 982.46 + 1084.84 + 1196.31 = 4,215.62.

Let us return to reconsider our initial assumption that claims tail off after
three years of development. Looking carefully at the development of claim
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TABLE 1.13

Estimated ultimate average claim size: grossing-up
method for large vehicle damage.

Origin Development year i Ultimate
year 0 1 2 3 claim size

1999 16.12 15.53 15.35 15.11 15.11
2000 16.71 15.56 15.31 15.07
2001 15.87 15.25 14.80
2002 15.12 13.97

gC
i|i+1 1.05095 1.01399 1.01587
gC

i|3 1.08256 1.03008 1.01587 1

numbers arising from origin year 1999 in Table 1.10, one might have some
misgivings about this assumption. After all, there were 6 claims arising in both
development years 2 and 3 from origin year 1999! In light of this, one might
decide to add a tail factor to the claim numbers of Table 1.10 and reevaluate
the numbers of ultimate claims for each origin year (and, consequently, the
total amount ultimately payable for this business). For example, one might
decide that claims from origin year 1999 have not finished developing (i.e.,
there are some IBNR claims) and that 70 is a more reasonable estimate of
the number of ultimate claims arising from this year! Using the grossing-up
factor of 63/70, one would then estimate the number of ultimate claims for
origin years (2000, 2001, 2002) to be, respectively, (72.46, 81.42, 95.17). Using
the previously determined average severity figures, the corresponding estimate
of the total amount ultimately payable on this business would rise to about
$4,684,018.

1.4 The Bornhuetter–Ferguson or loss ratio method

In determining future reserves, a good analyst looks at the claims data in
different ways and tries to make the best use of any collateral information
available. In the Bornhuetter–Ferguson (B–F) method, information on loss
ratios is combined with a standard projection technique like the basic chain
ladder method to estimate necessary reserves. Just as in the average cost per
claim method, this method tries to combine information on how average claim
amounts as well as claim numbers develop over time, and compare them with
changes in losses relative to collected premiums. In their original development
of this method, Bornhuetter and Ferguson [7] applied it to data on incurred
claims, but it can clearly be used for paid claims as well.



BORNHUETTER–FERGUSON METHOD 15

There are many ratios that one may consider to evaluate trends in losses in
the insurance process (see Chapter 12 in [19]). Here we shall normally use the
term loss ratio‡ to mean the ratio of incurred or paid claims to earned premi-
ums over a given period of time. The combined ratio is the ratio of incurred
claims plus expenses to earned premiums, while the trading ratio takes into ac-
count the investment return on premiums and reserves. The trading ratio then
takes the form of (incurred claims + expenses − investment returns)/earned
premiums. Traditionally, the Bornhuetter–Ferguson method takes account of
the loss or claim ratio in estimating reserves, but if sufficiently good informa-
tion is also available about developing costs and investment returns, then the
method can be adapted to make use of other relevant ratios.

Normally, one would expect a certain amount of consistency over time in
the loss ratios calculated on the basis of business in different origin years. Of
course, there could be exceptional years which might arise because of unusual
events like floods, hurricanes, market crashes, terrorist activities and other
disasters. A very important factor influencing the expected loss ratio is the
market cycle itself! The market cycle is where premium rates on a class of
business rise or fall due to the economic effects of supply and demand in the
provision of insurance capacity. The more (less) insurers there are competing
for business, the lower (higher) overall premiums will be. The 2005 hurricane
Katrina is an example of an unusual event which affected the market cycle
and resulted in premium rates for property catastrophe increasing because
fewer insurers were prepared to write this type of business!

The Bornhuetter–Ferguson method in brief consists of the following proce-
dure. Given incurred or paid claims data (adjusted for inflation) in triangular
form, one uses the basic chain ladder method to determine development factors
(or, equivalently, grossing-up factors) for running off the triangle (one does
not actually need to run-off the triangle here, it is the development/grossing-
up factors which are of primary concern). Next, one turns to the loss ratios,
and for each origin year one obtains an initial or prior estimate (on the basis
of premiums paid) of the total ultimate loss. For example, if the loss ratio
is a constant 0.92 over all years, then the initial estimates of ultimate losses
would be 92% of the premiums earned in an origin year. These initial esti-
mates are made independently of the way the claims are developing. In the
next step one finds for each year of origin what claims should have been in-
curred (or paid) at the present time assuming that claims actually do develop
to the ultimate according to the calculated development factors. This amount
is then subtracted from the initial estimate of ultimate claims to find what
is called the emerging liability. The emerging liability is then added to the
reported liability (which is the actual or observed incurred liability) to obtain
the Bornhuetter–Ferguson estimate of ultimate liability for a given origin year.
If, for example, for a given year of origin we have reported a higher amount

‡This is also commonly referred to as the claim ratio.
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than expected (reported liability exceeds predicted current liability), then we
adjust our initial estimate of ultimate liability upwards by this amount. These
estimates are then used to determine what reserves should be set aside.

The method is best illustrated by an example, but first we give some no-
tation which should assist in understanding the procedure. Assume that our
data consists of a delay triangle of cumulative incurred (or paid) claims over
k development years, where Ci,j represents the cumulative amount of claims
by development year j which originate in year i, for i = 1, . . . , k + 1 and
j = 0, 1, . . . , k. We let ri, Pi and U I

i be, respectively, the loss ratio, earned
premium and initial estimate of the ultimate liability for claims originating
in year i. In many cases, ri will be assumed to be constant over different
origin years, perhaps because underwriting practices aim to charge premiums
with this objective in mind (for example, that claims should amount to 92%
of premiums). We use dj = dj|k to denote the development factor from devel-
opment year j to the ultimate (k in this case) which is determined by using
the chain ladder technique on the delay triangle. It is worth noting that since
there are different methods for determining these factors (for example, by
taking weighted or arithmetic averages of the appropriate link ratios), there
are several slightly different ways of proceeding in the Bornhuetter–Ferguson
method.

The initial estimate of ultimate liability for claims originating in year i
is U I

i = (ri)Pi. If the development factors are good indicators of how claims
should evolve, then we would expect to have incurred approximately U I

i/dk+1−i

in claims at the present time. The difference between the initial estimate of
ultimate liability for those in origin year i and this approximation of what we
should have incurred is (1−1/dk+1−i)U I

i , which is called the emerging liability
(claims that we still expect to incur or pay). This emerging liability for origin
year i is then added to the observed or reported liability Ci,k+1−i to obtain
the B–F estimate Ui of ultimate liability for origin year i given by

Ui = Ci,k+1−i + (1− 1/dk+1−i)U I
i .

Table 1.14 shows the cumulative amounts ($000′s) of incurred claims over
five years in a household insurance portfolio. We assume that the figures
are adjusted for inflation, and that earned premiums and loss ratios are also
given from which initial estimates of ultimate liabilities are obtained. Note
that the loss ratio has increased in origin years 4 and 5 from 86% to 88%.
Hence the initial estimate for the ultimate liability arising from origin year 4
is U I

4 = (0.88)7481 = 6583.3.
The next step in the B–F method is to determine development ratios for

running off the delay triangle, and in this case we use the weighted average or
pooled method of link (development) factors as described in the basic chain
ladder method. For example, the development factor

d2 = d2|4 = d2|3 d3|4 =
4176 + 4608
3956 + 4527

4271
4176

= 1.05904.
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TABLE 1.14

Household insurance data: incurred claims, premiums and loss ratios.
Origin Development year j
year i 0 1 2 3 4 Premium Loss ratio U I

i

1 3264 3762 3956 4176 4271 5025 86% 4321.5
2 3617 4197 4527 4608 5775 86% 4966.5
3 4308 4830 5109 6545 86% 5628.7
4 4987 5501 7481 88% 6583.3
5 5378 7990 88% 7031.2

In a similar way the other ultimate development factors are calculated, which
are given in Table 1.15.

We now use these development factors to determine what we should have
incurred in claims at the current time were these factors appropriate. For
example, for claims originating in year 3 we reported (in the current year)
incurred claims of 5109, yet if the development factor d2|4 = 1.05904 were
appropriate and the ultimate loss is to be 5628.7, then we would have expected
to currently report about 5628.7/1.05904 = 5314.91 in claims. This would
mean that we still expect to incur

5628.7− 5314.91 = 5628.7 (1− 1/d2|4) = 313.79.

This is the emerging liability for the origin year 3. Finally, we take this
estimate of emerging liability and add it to the reported liability to obtain
the B–F estimate of total liability for this origin year. For example, with
origin year 3, we would now add our estimate of emerging liability 313.79 to
the currently reported liability of 5109 to obtain the B–F estimate of ultimate
liability of 5422.79.

Proceeding in a similar fashion we can calculate emerging and total liabil-
ities for the other origin years, and the results are given in Table 1.15. The
current estimated total ultimate liability with respect to these five years is
therefore 27,531.76. The currently reported incurred claims amount to 24,867,
and therefore we should set aside an additional amount of 27,531.76−24,867 =
2,664.76 in reserves for future payments. If we had used the basic chain ladder
method alone (with development factors as determined here), the estimate of
additional reserves (beyond reported results) would amount to 2,563.21, which
is about 101.55 ($101,550) less than the estimate provided by the B–F method.
This is further elaborated on below.

In the B–F method for estimating future liabilities, one is essentially com-
bining projections based on a technique like the chain ladder method and
those obtained (somewhat independently) on the basis of loss-ratio informa-
tion. The B–F estimate for ultimate liability on claims originating in year i
takes the form

Ui = emerging liability + reported liability
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TABLE 1.15

Household insurance data: emerging and total liabilities.
Origin Init. ult. Dev. Emerging Emerging Rep. B–F est.
year loss factor factor liability liab. of liab.

i U I
i d5−i|4 (1− 1

d5−i|4
) U I

i (1− 1
d5−i|4

) Ci,5−i Ui

1 4321.5 1 0 0 4271 4271
2 4966.5 1.02275 0.02224 110.47 4608 4718.47
3 5628.7 1.05904 0.05575 313.79 5109 5422.79
4 6583.3 1.12553 0.11153 734.25 5501 6235.25
5 7031.2 1.27263 0.21422 1506.25 5378 6884.25

=
(

1− 1
dk+1−i|k

)
U I

i + Ci,k+1−i

=
(

1− 1
dk+1−i|k

)
U I

i +
(

1
dk+1−i|k

)
dk+1−i|k Ci,k+1−i,

where U I
i is the initial estimate based on the loss ratio information and

dk+1−i|k Ci,k+1−i is the estimate based on the basic chain ladder method.
Therefore the B–F estimate is actually a weighted average of these two

estimates, and in the parlance of credibility theory (as we will see in Chapter
5) we may say that this represents a credibility liability formula of the type

Ui = (1− Z) U I
i + Z dk+1−i|k Ci,k+1−i.

Here the credibility factor Z = 1/dk+1−i|k (which is actually the grossing-up
factor gk+1−i|k) represents the weight we put on the claims information (or
data) to date in the ith row of the delay triangle. The factor (1 − Z) is the
weight put on the prior information provided by the loss ratio estimates.

If dk+1−i|k is large (the ultimate development factors usually increase with
i, that is as time progresses and we project over more years), then less weight
is put on the information in the ith row of the delay triangle. For origin year
3 of our household insurance data in Table 1.14, the B–F estimate of ultimate
liability can be written in the form

U3 = (1− Z) U I
3 + Z d2|4 C3,2

= (0.05575) (5628.70) + (0.94425) (5410.63) = 5422.79,

where Z = 0.94425. In the estimate for the most current year (origin year
5) the so-called credibility factor Z is smaller and equal to 0.78578. In any
case note that all of the Z values (credibility factors) in our example are quite
large, indicating that a considerable amount of weight is being put on the chain
ladder method estimates and only a small amount on the loss ratio estimates.
This is also evident from Table 1.15 where one notes that the ultimate liability
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estimates Ui are all considerably less than the corresponding initial estimates
U I

i (being pulled down by the chain ladder estimates).

1.5 An example in pricing products

In general insurance, methods for running off delay triangles are crucial tools
in estimating reserves for existing business. However, they also can be quite
useful in pricing new business. One may be asked to give a “quick” premium
quote for a new class of business on the basis of a limited amount of claims and
collateral information (such information might result from having reviewed
similar risks in other reserving or pricing reviews). In other situations (for
example, employers liability insurance), one might be asked to quote on taking
over a discontinued book of business from a broker. In any exercise of this
type, the analyst will want to look at all available information and usually
in several different ways. He/she will look for outliers and trends, then on
the basis of these make decisions with the support of prior experience. Of
course, such judgements will be subject to scrutiny and should be justifiable
to others, possibly through an audit trail.

In the following example, one is asked to quote a price for a new contract
given information on past incurred claims data (over the six years 2001 −
2006) for an employer liability scheme in a large company. Information is
also available on the historical payroll in the company, all of which is given
in Table 1.16. Claim values are indicated with C, and claim numbers with
N. A payroll in the region of $86,746,028 is predicted for next year. In this
instance, the figures are given in US $ and have not been adjusted for inflation
(which in this case, we assume has been, and continues to be, at the rate of
5% per annum). Up until now another company has had the contract for this
business. Given that the contract renews on 1 January 2007, what premium
can one quote for this business (that is, to cover all claims which will arise
from the year 2007)? One is also asked to consider pricing an each and every
loss deductible for $5,000. What price can one quote for this option? Finally,
what would be the price for a two-year insurance period?

Note that the claims data in Table 1.16 is presented in triangular form, but
in a slightly different style than previously. Delay triangles can come in all
shapes and sizes, but as long as the axes are correctly identified, they should
tell you the same things. Most projections for triangular data are performed
on spreadsheets, and normally the first step is to put the data into a familiar
customized template. Here we do not have available information on the past
premiums paid for this business. Although it might be useful and of interest
to know this, it could also be quite misleading in some situations (it would
probably be an actual premium as opposed to a pure premium, and therefore
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TABLE 1.16

Employer liability data – all claim values (C) in US $.
Y Payroll @end 01 @end 02 @end 03 @end 04 @end 05 @end 06

1 68,750,000 C 1,250,735 2,138,375 2,461,406 2,534,169 2,579,006 2,529,192
N 144 243 265 271 271 271

2 57,165,625 C 1,407,613 1,750,281 1,754,032 1,787,872 1,802,665
N 75 175 175 177 190

3 61,600,000 C 1,461,649 2,370,228 2,420,278 2,503,030
N 108 202 209 212

4 68,406,250 C 1,029,650 1,458,871 1,551,980
N 73 176 181

5 76,037,500 C 1,013,163 1,991,081
N 118 201

6 84,219,444 C 1,041,075
N 110

could be subject to unknown expenses, investment alterations and perhaps
even political adjustments).

In order to quote a premium for the next year of business, we need to
predict future frequency and severity of claims. The past and expected fu-
ture exposure information on annual payrolls should be useful in giving us a
benchmark to predict forthcoming claim numbers. Any other relevant infor-
mation which is easily accessible should also be considered, and this may vary
with the type of business being analyzed. For example, in marine insurance
the annual number of ships insured might prove a good measure of exposure,
while in airline insurance the number of planes covered and/or the number of
passenger miles flown might be useful.

Even given the information in Table 1.16, it should be clear that there is
no unique way to proceed in generating a premium estimate. The method
illustrated here will use run-off triangles for claim numbers and severity of
claims, basically relying on the average cost per claim method. However, this
example intends to illustrate how in practice an analyst may (slightly) modify
such a well-defined method in making a final selection of development factors.
This (somewhat subjective) selection often takes into account the sometimes
vast prior knowledge that an experienced claims analyst may have.

In this pricing exercise, we as of yet have no information on the number
of claims for the coming year, and this is where the exposure information
(in this case, on payroll) will be used. Inflation will be accounted for in
a slightly different manner than that considered before (in the basic chain
ladder method), and although it is in some sense less precise, it should still
give us reasonable estimates.

One way of proceeding to select development factors for projecting claim
numbers is detailed in Table 1.17. In the upper part of the table, reported
claim numbers are presented in the usual triangular form. We initially might
note that claim numbers arising from origin year 2001 seem to have tailed
off, suggesting a five-year delay to the ultimate is reasonable (i.e., claims
are reported within five years of origin). One should also note a relatively
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TABLE 1.17

Employer liability data – development factors for claim numbers.
Development year

Origin year ↓ 0 1 2 3 4 5
2001 144 243 265 271 271 271
2002 75 175 175 177 190
2003 108 202 209 212
2004 73 176 181
2005 118 201
2006 110

Link ratios 0 → 1 1 → 2 2 → 3 3 → 4 4 → 5 5 → Ult
2001 1.688 1.091 1.023 1.000 1.000
2002 2.333 1.000 1.011 1.073
2003 1.870 1.035 1.014
2004 2.411 1.028
2005 1.703

Determination of development/grossing-up factors

Average 2.001 1.038 1.016 1.037 1.000
Exclude max./min. 1.969 1.032 1.014

Selection 1.969 1.050 1.025 1.010 1.010 1.000
Cum. selection 2.162 1.098 1.046 1.020 1.010 1.000

% of Ult. 46% 91% 96% 98% 99% 100%

smaller number of claims being reported in development year 0 for those
originating in 2002 and 2004, and perhaps as a consequence one might seek
further information on this variation. The middle part of the table gives
the link ratios between development years for each origin year. One would
normally scan this data looking for variability, trends and outliers.

We already know of several methods that may be used to get “representa-
tive” factors for use in projecting further development. Here results are given
for the (arithmetic) average of the link factors, as well as the more robust
choice of a trimmed mean (exclude max./min.). In the calculation of this
trimmed mean, the two extremes (minimum and maximum) are omitted be-
fore calculating the average. After eye-balling § the resulting calculations, the
analyst makes an informed selection (of the development factors to be used
in projections). Here, for example, the analyst was happy to use d0|1 = 1.969
even though the link factor for this development in the origin year 2004 was
2.411. The choice of d1|2 = 1.050 may be justified as the link factors for the

§A quick visual scan for consistency and spotting outliers and/or trends.
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development (1 → 2) were relatively high in the more recent years.
One would normally expect to observe some smoothness in the selected

development factors. This is not the case for those factors determined by
arithmetic averages, where one notes in particular that the average 1.016
calculated for development 2 → 3 is out of line (with other development
years). This may be the main reason why a figure of d2|3 = 1.025 was selected
here by the analyst. The analyst was happy to select d3|4 = 1.010 in spite
of the fact that the corresponding average is 1.037. The development factor
d4|5 = 1.010 was selected perhaps somewhat conservatively to allow for the
small possibility of a claim arriving in the fifth year of development (in spite
of the fact that this did not occur in the only year 2001 where we had the
possibility of observing it). The last development factor d5|Ult is set at 1,
indicating satisfaction with the assumption that claims will not be delayed
more than five years.

It is perhaps worth emphasizing once again the importance of making well-
considered decisions with regard to the ultimate (or tail) factors in the devel-
opment of claims. One needs to be cautious and perhaps slightly conservative
in this regard (how many years does it take for claims to develop from a given
year of origin?), but at the same time one wants to be realistic. The cumula-
tive development factors of the form dj|Ult and the corresponding grossing-up
factors are given in the last two rows of Table 1.17.

TABLE 1.18

Employer liability data – future count predictions and exposure rates.
Origin Counts Ultimate Est. Future Exposure Revalued Rate
year ↓ factor counts claims exposure

2001 271 1.00 271 - 68.8 92 2.94
2002 190 1.01 192 2 57.2 73 2.63
2003 212 1.02 216 4 61.6 75 2.89
2004 181 1.05 189 8 68.4 79 2.39
2005 201 1.10 221 20 76.0 84 2.63
2006 110 2.16 238 128 84.2 88 2.69

Selected exposure rate → 2.70

2007 Expected future claims ⇒ 234 86.7 86.7

Using the selected development factors, the numbers of unreported claims
arising from the origin years 2001−2006 are estimated and given in Table 1.18.
In particular, note that the expected total number of future claims from these
origin years is 162. Our main objective, however, is to get a good estimate of
the number of claims which will which arise out of the year 2007, and here



AN EXAMPLE IN PRICING PRODUCTS 23

is where we rely on the exposure (in this case, payroll) information available.
First of all, we should adjust this payroll information for inflation and restate
values currently. The results of this are given in the column labeled Revalued
exposure in Table 1.18, where payrolls have been adjusted to mid-2007 prices.
We assume that the historical payroll figures given are mid-year values, and
so, for example, 68.8 units of exposure in 2001 has become 68.8(1.05)6 = 92
in 2007 money. The last column in this table gives the rate of predicted
number of claims arising from a given origin year relative to units of exposure.
Observe that the highest rate occurs in 2001 where there are 2.94 predicted
(for 2001 it is actual) claims per unit of payroll (expressed in 2007 money).
After studying the various rates (the arithmetic mean here is 2.70), the analyst
here was happy to select 2.70 for use in prediction for the year 2007. Given an
estimated payroll of 86.7 units in 2007, one would then estimate the number
of claims arising from origin year 2007 to be 234 = 2.70(86.7).

TABLE 1.19

Employer liability data – development factors for claim severity.
Development year

Year ↓ 0 1 2 3 4 5
2001 1,250,735 2,138,375 2,461,406 2,534,169 2,579,006 2,529,192
2002 1,407,613 1,750,281 1,754,032 1,787,872 1,802,665
2003 1,461,649 2,370,228 2,420,278 2,503,030
2004 1,029,650 1,458,871 1,551,980
2005 1,013,163 1,991,081
2006 1,041,075

Link ratios 0 → 1 1→ 2 2→ 3 3→ 4 4→ 5 5→ Ult
2001 1.710 1.151 1.030 1.018 0.981
2002 1.243 1.002 1.019 1.008
2003 1.622 1.021 1.034
2004 1.417 1.064
2005 1.965

Determination of development/grossing-up factors

Average 1.591 1.060 1.028 1.013 0.981
Exclude 1.583 1.042 1.030
max./min.

Selection 1.583 1.060 1.025 1.010 0.990 0.990
Cum. 1.702 1.076 1.015 0.990 0.980 0.990
selection

% of Ult. 59% 93% 99% 101% 102% 101%

We now turn to an analysis of claim values, which is presented in Tables
1.19 and 1.20. Our objective is to estimate the average value (severity) of a
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claim arising from origin year 2007. The procedure is the same as that used
for the numbers of claims, where link ratios are calculated and studied prior
to making a selection of development factors. Note that the factors selected
for developments 4 → 5 and 5 → Ult are less than 1, unlike the situation
for claim counts. There are several reasons why one might expect incurred
claim values to decrease slightly near the end of development (this would
not usually be the case for paid claims). On some occasions, a few claims
that are outstanding for a long period and are expected to be large, might
in the end be small (or in fact, nothing) due to consequences of legal action.
In other situations, it might happen that case reserves are being constantly
overestimated (in this example, we might consider what is being reported in
Table 1.16 as case reserves since these figures are for incurred claims). This is
a conservative approach to reserving and might seem to be reasonable in order
to be on the safe side. However, it can also have dangerous consequences as
it might make the business look too costly and result in an excessively high
premium quote, a consequence of which might be your company not writing
the business despite it being a potentially profitable contract!

We return to our analysis of claim severity. After the selection of develop-
ment factors between consecutive years, cumulative development factors and
grossing-up factors are determined. These are then used to estimate total
ultimate claim values, and then claim averages by dividing by projected claim
numbers (Table 1.20). For example, we estimate total claims arising in 2004
to be (1.015) 1,551,980 = 1,574,714, and that the average severity of such
claims is (1,574,714)/189 = 8,321. For comparative purposes, we have also
calculated a column (Nonprojected X̄) of the average claim size based only
on claims reported up to the present for each origin year.

The astute reader will note that we have not made any adjustment for infla-
tion yet in our analysis of claim values. We could, of course, make a triangle of
incremental incurred claims, adjust for inflation, and construct a table of cu-
mulative predicted claims before dividing by projected claim numbers. Here,
however, we have been more approximate in nature and simply adjusted the
projected average severity of a given origin year for inflation by assuming its
monetary value comes from that year. For example, for origin year 2004, we
have a projected claim average of 8,321, which adjusting for inflation to mid-
2007 has value 8,321(1.05)3 = 9,632. Similarly, inflation-projected average
values are calculated for other origin years and given in the last column of
Table 1.20. Again, for comparison purposes, averages over the origin years of
these various averages are calculated and a final selection of 10,500 is made
to be used as an (expected) average severity in 2007. It is worth noting that
this is significantly smaller than the arithmetic average of 11,036 for all origin
years. This selection could be justified on the grounds that the higher value
of 11,036 gives equal weight to the earlier years of the data, and that our
method for selecting an expected value should recognize the downward trend
in average losses.

On the basis of a predicted 234 claims in 2007 with average severity of
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TABLE 1.20

Employer liability data – future claim values.
Origin Incurred Dev. Est. No. Proj. Nonproj. Inflation
year ↓ losses factor losses claims X̄ X̄ adj. X̄

2001 2,529,192 0.990 2,503,900 271 9,239 9,333 12,382
2002 1,802,665 0.980 1,766,792 192 9,207 9,488 11,751
2003 2,503,030 0.990 2,477,752 216 11,457 11,807 13,926
2004 1,551,980 1.015 1,574,714 189 8,321 8,574 9,632
2005 1,991,081 1.076 2,141,462 221 9,704 9,906 10,699
2006 1,041,075 1.702 1,772,182 238 7,453 9,464 7,825

Averages → 9,230 9,762 11,036
2007 Selection average for claim size → 10,500

10,500 we would suggest a pure premium of 2,459, 250 = 234(10,500) for this
business.

For a two-year insurance period, we would have to adjust for inflation to
2008 and make some assumptions about possible changes in payroll. If, for
example, we can assume that the payroll will only increase in line with ordi-
nary inflation of 5% from 2007 to 2008, then the predicted number of claims
for 2008 would remain at 234 (the unit of exposure would become one million
payroll in mid-2008 value), while the average severity would increase by 5%.
Hence the segment of the pure premium attributed to the year 2008 in a two-
year insurance period would be (1.05)2,459,250 = 2,582,212, remembering
that this is now in mid-2008 money. The quoted premium (for a one or two-
year period) would be modified to take account of various factors including
expenses, investment credits, reinsurance arrangements and the competitive
nature of the business.

When the premium is to be paid is another important consideration, since
the pure premiums above are in mid-2007 (or mid-2008) money. For example,
if the premium for a two-year period of insurance is to be paid on 1 January
2007, then the pure premium in mid-2007 money of 2(2,459,250) = 4,918,500
should be discounted for a six-month period, giving a value of 4,799,965 =
4,918,500/

√
1.05. In this case, since the premium would be obtained at such

an early stage in development (of claims arising during 2007 − 2008), the
investment credit would presumably have a considerable bearing on the ulti-
mately quoted premium.

Finally, suppose that one is asked to quote a premium for this business
(say a one-year contract) where a deductible of $5,000 is in force. The effect
of the deductible is that only the excess of any claim over $5,000 is actu-
ally paid by the insurer. Strictly speaking, we would be on somewhat shaky
grounds to come up with a good quote here, for we do not have information
on the sizes of individual claims. Normally, with individual claim informa-
tion, we would try to pick an appropriate distribution to model losses (say a
lognormal or Pareto) and use this as a basis for estimating total claims with
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various possible deductibles. Chapter 2 on loss distributions describes many
useful such distributions. In a situation like the present, let us consider us-
ing a lognormal distribution with mean 10,500 and standard deviation of say
2(10,500) = 21,000 (often one might use a lognormal distribution where the
standard deviation is between 75% and 275% of the mean)¶ to model claim
size X. Using

E(X) = eµ+σ2/2 = 10,500 and V ar(X) = eµ+σ2/2(eσ2
− 1),

we have that logX ∼ N(µ = 8.4544, σ = 1.2686). Therefore the probability
that a claim X exceeds the deductible 5, 000 is

P (logX > log(5000)) = 1− Φ(0.0495) = 0.4803.

Hence with such a deductible in force, we would expect about 234(0.4803) =
112.38 claims, with average settlement of∫ ∞

5000

xfX(x) dx = 10,500
[
1− Φ

(
log 5000− µ− σ2

σ

)]
= 9330.36.

Hence the pure premium for the business with this deductible would be in the
region of 9330.36(112.38) = $1,048,566.

1.6 Statistical modeling and the separation technique

The separation technique is a statistical method for running off delay triangles,
which directly incorporates a factor for inflation. We will very briefly describe
this method, and should you require further details refer to the book by
Hossack, Pollard and Zehnwirth [29]. A basic assumption in using this method
is that over the various origin years, a constant proportion of claims (in real
terms) are paid in the various development years.

The idea in the separation method is to model the incremental claims Pi,j

originating in origin year i and paid in development year j in terms of three
separate factors. More precisely, one assumes that Pi,j is of the form

Pi,j = Ci rj λi+j ,

where Ci (which is the quantity of primary interest) represents total claims
eventually arising from origin year i, rj represents the proportional develop-
ment of total claims in development year j and λi+j is a factor representing
effects in calendar year i+ j (such as inflation). In theory, one would like to

¶But this will vary considerably from class to class of business.
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obtain estimates of these factors on the basis of the known data, and then
make projections into the future. Of course, in particular one would have to
make assumptions about the values of the λ factors for future calendar years,
and this is often done by projecting estimated values of the λ’s for the current
(already observed) calendar years.

To begin with, we do not normally know the values for the total cumulative
claims Ci arising from any origin year i > 0. Usually, the assumption is then
made that these values are proportional to the number of claims Ni eventu-
ally arising in each origin year. In turn, given that these are also not known
(but perhaps easier to estimate than total claim amounts), one assumes that
these are proportional to the number of claims ni,0 reported in development
year 0. Hence we conclude that Ci = c ni,0 for some constant c, and therefore
in dividing Ci by ni,0 we obtain Table 1.21. Assuming that development is
complete by development year k, we have that the proportional development
factors rj sum to 1 (r0 + r1 + · · · + rk = 1). Using the observed data on
incremental claims, one uses diagonal-type methods to estimate the param-
eters cλi+j and rj , and then with suitable assumptions on the development
of the further (largely due to inflation) values λk+1, . . . , λ2k, one may run-off
the triangle of claims to obtain estimates of the Ci for i = 1, . . . , k.

TABLE 1.21

Separation model for cumulative claims.
Standardized incurred payment in development year j

Origin year ↓ 0 1 2 3 . . . k
0 cr0λ0 cr1λ1 cr2λ2 · · crkλk

1 cr0λ1 cr1λ2 cr2λ3 · ·
2 cr0λ2 cr1λ3 cr2λ4 · ·
3 cr0λ3 cr0λ4 cr2λ5 ·
· · ·
· ·
k cr0λk

1.7 Problems

1. Inflation-adjusted cumulative claims which have been incurred on a gen-
eral insurance account are given (in $) in Table 1.22. Annual premiums
written in 2006 were $212,000, and the ultimate loss ratio is being es-
timated as 86%. Claims are assumed to be fully run-off by the end of
development year 3. The actual paid claims to date for the policy year
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2006 are only $31,200. Using the Bornhuetter–Ferguson method, esti-
mate the outstanding claims still to be paid from those policies written
in 2006 only.

TABLE 1.22

General insurance cumulative claims.
Development year

Policy year 0 1 2 3
2003 47,597 101,093 128,511 138,537
2004 50,230 105,962 132,950
2005 50,542 107,139
2006 54,567

2. Cumulative incurred claim numbers N and annual paid claim amounts C
(thousands of dollars) for employer liability in a large car manufacturing
plant by year of origin and development up until the end of year 2006
are given in Table 1.23. Use the average cost per claim method (with
the average grossing-up technique) to determine what reserves should
be set aside for future claims.

TABLE 1.23

Annual paid claims (C) and cumulative incurred
numbers (N) for car manufacturing plant.

Development year
1 2 3

Origin year C N C N C N
2004 2,317 132 1,437 197 582 207
2005 3,287 183 1,792 258
2006 4,816 261

3. Inflation-adjusted cumulative incurred claim numbers N and amounts
C ($000′s)) for personal liability in a large airline company by year of
origin and development up until the end of year 2005 are given in Table
1.24. Use the average cost per claim method to determine what reserves
should be set aside for future claims.

4. Malicious damage claims ($000′s) for a collection of policies in successive
development years are given in Table 1.25, where in each case it is for the
actual amount paid in the given years. It can be assumed that all claims
are settled by the end of development year 3. Inflation rates for the 12
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TABLE 1.24

Personal liability claims in airline company.
Development year

1 2 3 4
Origin year C N C N C N C N

2002 1,752 104 2,192 120 2,514 126 2,988 130
2003 1,798 110 2,366 114 2,714 116
2004 1,890 124 2,426 132
2005 1,948 126

months up to the middle of a year are given by 2002 (4%), 2003 (2%)
and 2004 (4%). Using an inflation-adjusted chain ladder technique, de-
termine the amount of reserves that should be set aside at the end of
2004 (in mid-2004 prices).

TABLE 1.25

Malicious damage claims.
Development year

Year of origin 0 1 2 3
2001 2,144 366 234 165
2002 2,231 340 190
2003 2,335 270
2004 2,392

5. Table 1.26 gives (inflation-adjusted) cumulative incurred claim numbers
(N) and amounts (C) ($000′s) for sporting accidents at a large university
by year of origin and development up until the end of year 2005. Use
the average cost per claim method to determine what reserves should
be set aside for future claims at the end of 2005.

TABLE 1.26

Sporting accident claims.
Development year

1 2 3 4
Origin year C N C N C N C N

2002 876 52 1,096 60 1,257 63 1,494 65
2003 899 55 1,183 57 1,357 58
2004 945 62 1,213 66
2005 974 63
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6. The inflation-adjusted claims data in Table 1.27 were available at the
end of the year 2006 for a class of business written by a general insurance
company. It can be assumed that, for a given accident year, all claims
will be reported by the end of development year 2.

TABLE 1.27

Inflation-adjusted claims for general insurer.
Accident year Reported claims ($ 000’s)

in development year
0 1 2

2004 500 100 40
2005 590 120
2006 700

Accident year No. claims reported
in development year
0 1 2

2004 50 6 2
2005 56 7
2006 60

As of December 31, 2006, $1,200,000 had been paid by the company as
a result of claims on this block of business. Calculate the outstanding
claim reserve at December 31, 2006, using the average cost per claim
method. Use the “grossing-up” method to run-off the triangles.

7. In Table 1.28 we have the cumulative payments made from motor in-
surance claims by accident year and development year. Use the chain
ladder method to estimate the reserves necessary at the end of 2006
to pay for outstanding claims for these years. Assume that claims are
settled within four years of the accident year and that no discounting is
necessary.

TABLE 1.28

Payments in motor insurance portfolio.
Development year

Policy year 0 1 2 3 4
2002 1,179 2,115 3,324 3,660 3,780
2003 1,356 2,025 3,773 4,194
2004 1,493 3,021 4,320
2005 1,830 3,213
2006 1,775
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8. Fire insurance claim payments (in $000′s) for a portfolio of policies in
successive development years are given in Table 1.29, where entries are
the actual amounts paid in the given years. It can be assumed all claims
are settled by the end of development year 3. Inflation rates for the 12
months up to the middle of a year are given by: 2001 (7%), 2002 (5%)
and 2003 (3%). Using an inflation-adjusted chain ladder technique, show
that the amount of reserves that should be set aside (mid-2003 prices)
at the end of 2003 is 687,000. What would the reserves be if we had
used an (average) inflation rate of 5% over these three years?

If the estimated inflation rates for the 12 months up to the middle of
2004, 2005 and 2006 were, respectively, 4%, 8% and 7%, what would
have been the predicted amount of payments to be made in 2005 in
respect to this claims portfolio?

TABLE 1.29

Incremental fire insurance claims.
Development year

Year of origin 0 1 2 3
2000 1,072 158 102 104
2001 1,118 174 104
2002 1,150 188
2003 1,196

9. Incremental claim payments for a household insurance scheme in suc-
cessive development years are given in Table 1.30. These increments are
in each case for the actual amounts paid in the given years. An estimate
of reserves for IBNR claims originating in 2002 and which still have yet
to be reported after four years is also given by 212 in mid-2006 money.

TABLE 1.30

Household insurance incremental claim payments.
Origin Payment in development year IBNR estimate
year 0 1 2 3 4 at June 30, 2006
2002 2,060 520 465 230 95 212
2003 2,100 540 468 217
2004 2,346 590 485
2005 2,510 655
2006 2,750

Suppose the annual claim payments inflation rates over the 12 months
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up to the middle of a year are given by

2002 6.2%
2003 5.6%
2004 5.2%
2005 4.1%
2006 2.6%

Using an inflation-adjusted chain ladder technique, estimate (in mid-
2006 prices) the total amount outstanding in respect of these claims.

10. Claim numbers by year of reporting of an insurer with respect to wind
damage are given in Table 1.31. Use the basic chain ladder method to
estimate the number of IBNR claims on this business.

TABLE 1.31

Counts of wind damage claims by year of reporting.
Development year

Policy year 0 1 2 3 4 5
1999 126 118 39 27 15 1
2000 102 101 42 28 13
2001 133 131 44 17
2002 151 151 49
2003 143 142
2004 152

11. Table 1.32 gives cumulative incurred claim numbers and amounts in
thousands of dollars for personal liability by year of origin and devel-
opment up to the end of 2003. Inflation over the past three years has
been at the rate of 3% per annum. Use the average claim size method
to determine what reserves (in 2003 monetary value) should be set aside
for future claims. What would your estimate be if you ignored claim
numbers and used the basic chain ladder (inflation-adjusted) method
with (pooled) weighted development factors?

12. Table 1.33 gives cumulative paid claims in a motor insurance scheme over
a five-year period, together with annual premium income and estimated
loss-ratios determined by an underwriter. One may assume that the
amounts have been adjusted for inflation.

Use the Bornhuetter–Ferguson method to estimate outstanding claims
in respect of this scheme. In doing so, use the (pooled) weighted devel-
opment factors of the basic chain ladder method. By how much does
the estimate of outstanding claims determined by the basic chain ladder
method exceed that derived by the B–F method? Can you give some
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TABLE 1.32

Cumulative incurred amounts (C) and numbers (N) for
personal liability claims.

Development year
0 1 2 3

Origin year C N C N C N C N
2000 690 42 856 49 1021 55 1248 57
2001 731 45 907 54 1200 58
2002 803 53 1091 66
2003 824 49

TABLE 1.33

Motor insurance scheme: paid claims, premiums and loss ratios (LR).
Origin Development year j
year i 0 1 2 3 4 Prem. LR UI

i

1998 31,766 48,708 62,551 69,003 70,587 76,725 92% 70,587
1999 30,043 45,720 59,883 65,671 77,000 92% 70,840
2000 35,819 54,790 71,209 79,100 90% 71,190
2001 40,108 58,960 86,400 92% 79,488
2002 45,701 98,610 94% 92,693.4

insight into why it is greater? What can one say about the underwriter’s
insight (based on the estimated loss ratios) into ultimate losses?

13. Determine the reserves that should be set aside at the end of 2006 for
future payments in respect of claims arising out of the origin years 2001−
2006 for the employer liability data appearing in Table 1.16. Use the
average cost per claim method with arithmetic averages for development
factors.

14. Table 1.34 gives information from a business which handles baggage
claims for an airline company. The claims arise from lost and damaged
luggage during transport. These incurred claim amounts do not take
account of inflation, which one may assume has been, and will continue
to be, at the constant rate of 4% per annum. One is also provided
information on the annual number of flights flown by the airline during
the period of time 1997−2002, which is clearly related to the number of
claims. It is predicted that the airline would have 43,373 flights in 2003.
One is asked to determine a pure premium for a one-year contract for
this business in 2003, expressed in terms of mid-2003 money. In the first
instance, you are asked to take account of inflation as in the example
on employers liability in Section 1.5. In the second case, take account of
inflation by determining yearly incremental incurred claims and adjust
them appropriately. In both cases, select as your development factors
the averages of the link ratios. Compare the estimates for the pure
premiums for the two methods. Are they significantly different?
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TABLE 1.34

Airline baggage damage data.
Y Flights @end 97 @end 98 @end 99 @end 00 @end 01 @end 02
97 34,375 C 766,084 1,309,770 1,377,629 1,412,197 1,451,284 1,451,284

N 1940 2430 2620 2710 2712 2712
98 28,583 C 862,173 1,072,059 1,084,357 1,095,084 1,104,324

N 1303 1750 1785 1795 1841
99 30,800 C 895,270 1,451,782 1,482,438 1,508,623

N 1734 2120 2190 2258
00 34,203 C 630,668 938,236 950,599

N 1586 1925 1974
01 38,019 C 643,432 1,030 384

N 1681 2359
02 42,110 C 640,337

N 1650
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Loss Distributions

2.1 Introduction to loss distributions

In this chapter, we study many of the classic distributions used to model losses
in insurance and finance. Some of these distributions such as the exponential,
gamma and Weibull are likely to be familiar to most readers as they are
frequently used in survival analysis and engineering applications. We will,
however, also consider distributions such as the Pareto and lognormal which
are particularly appropriate for studying losses. In modeling a loss, there is
usually considerable concern about the chances and sizes of large claims – in
particular, the study of the (right) tail of the distribution. For example, the
tails of the gamma (in particular, the exponential) and Weibull distributions
vanish at an exponential rate. Is such a decay appropriate when it is important
not to underestimate the size and frequency of large losses (for example, claims
in insurance or defaulted loans in banking)?

In spite of the fact that one may always work with the empirical distribu-
tion function derived from a data set of claims, there is often a natural desire
to fit a probability distribution with reasonably tractable mathematical prop-
erties to such a data set. In any attempt to do so, one would initially perform
some exploratory analysis of the data and make use of basic descriptive statis-
tics (such as the mean, median, mode, standard deviation, skewness, kurtosis
and various quantiles) and plots. One then might try to fit one of the clas-
sic parametric distributions using maximum likelihood (or other) methods to
estimate parameters. Various tests (for example, the Kolmogorov–Smirnoff,
χ2 goodness-of-fit, Anderson–Darling or the A.I.C. [Akaike Information Cri-
terion]) may be used to assess the fit of a proposed model. Often one may
find that a mixture of various distributions works well. In any case, consid-
erable care and perhaps flexibility should be used in settling on a particular
distribution. In Section 2.2 we review basic properties of some of the more
commonly used and classic loss distributions, and then in Section 2.3 discuss
methods of analyzing fit. In Section 2.4 we discuss various properties of mix-
ture distributions for losses, while in Section 2.5 we consider the impact of
reinsurance on losses.

Table 2.1 gives the amounts of 120 theft claims made in a household insur-
ance portfolio. This data set (Theft) is small relative to many which one may

35
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encounter in practice; however, it will provide a useful example of how one
might search for a loss distribution to model typical claims. The mean and
standard deviation of this data are given, respectively, by x̄ = 2020.292 and
s = 3949.857. Summary statistics (obtained from the statistical package R)
are given by

> summary(Theft)
Min. 1st Qu. Median Mean 3rd Qu. Max.
3.0 271.0 868.5 2020.0 1733.0 32040.0

From Minitab, one finds that the skewness γ1 = 5.1623 and the kurtosis
γ2 = 33.0954. The distribution of this claim data is positively skewed with a
reasonably fat right tail. Figure 2.1 gives a histogram of the data set Theft.
Note that the three relatively large claims of (11,453, 22,274, 32,043) make it
challenging to get a feeling for the spread of the other values. Figure 2.2 is
a graph of the histogram of the claims restricted to the range [0, 8500], and
gives a better perspective on the shape of the distribution.

TABLE 2.1

120 theft claims.
3 11 27 36 47 49 54 77 78 85

104 121 130 138 139 140 143 153 193 195
205 207 216 224 233 237 254 257 259 265
273 275 278 281 396 405 412 423 436 456
473 475 503 510 534 565 656 656 716 734
743 756 784 786 819 826 841 842 853 860
877 942 942 945 998 1029 1066 1101 1128 1167

1194 1209 1223 1283 1288 1296 1310 1320 1367 1369
1373 1382 1383 1395 1436 1470 1512 1607 1699 1720
1772 1780 1858 1922 2042 2247 2348 2377 2418 2795
2964 3156 3858 3872 4084 4620 4901 5021 5331 5771
6240 6385 7089 7482 8059 8079 8316 11,453 22,274 32,043

2.2 Classical loss distributions

2.2.1 Exponential distribution

The exponential distribution is one of the simplest and most basic distribu-
tions used in modeling. If the random variable X is exponentially distributed
with parameter λ and density function fX(x) = λ e−λ x for x > 0 , then
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FIGURE 2.1
Histogram of 120 theft claims.

it has survival function F̄X(x) = e−λ x, mean E(X) = 1/λ and variance
V ar(X) = 1/λ2. The moment generating function of X exists for any t < λ
and is given by MX(x) = λ/(λ − t). Note that for an exponential random
variable the mean and standard deviation are the same.

Since the mean x̄ = 2020.292 and standard deviation s = 3949.857 of the
120 theft claims are so different, it is highly unlikely that an exponential dis-
tribution will fit the data well. The skewness and kurtosis for any exponential
distribution are, respectively, 2 and 6, as compared to the sample estimates
of 5.1623 and 33.0954, suggesting that the claims data is both more positively
skewed and has a fatter right tail than one would expect from an exponential
distribution.

If X has an exponential distribution with 1/λ = 2020.292, then P (X >
8000) = 0.0191, P (X > 10,000) = 0.0071, and P (X > 20,000) = 0.0001,

Highlight
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FIGURE 2.2
(Restricted view of) histogram of 120 theft claims.

while the respective observed relative frequencies for the Theft claim data
are 6/120 = 0.05, 3/120 = 0.025 and 2/120 = 0.01667. These observations
suggest that a distribution for the Theft claim data should have a “fatter”
tail than that of an exponential distribution.

An exponential random variable X has the memoryless property in that
for any M, x > 0, P (X > M + x |X > M) = P (X > x). In fact, this mem-
oryless property is shared by no other continuous distribution, and hence
characterizes the family of exponential random variables (similarly, the ge-
ometric random variables are the only discrete family with this memoryless
property). The waiting times between events in a homogeneous Poisson pro-
cess with intensity rate λ are exponential random variables with parameter
λ.

The failure (or hazard) rate function rX of a random variable X defined
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at x is the instantaneous rate of failure at time x given survival up to time
x. Hence for an exponential random variable with parameter λ this takes the
form

rX(x) = lim
h→0

FX(x+ h)− FX(x)
h

1
F̄X(x)

=
fX(x)
F̄X(x)

=
λ e−λ x

e−λ x
= λ.

For an exponential distribution X, the tail probability F̄X(x) = P (X >
x) = e−λx converges to 0 exponentially fast. In many situations, it may be
appropriate to try and model a slower vanishing tail distribution. For example,
if P (X > x) is of the form aα/(b + cx)α for certain positive constants a, b, c
and α, then the tail probability of X goes to 0 at a slower (polynomial) rate.
For a function of the form aα/(b+cx)α to be the survival function of a positive
random variable, one must have that P (X > 0) = (a/b)α = 1. This gives rise
to the Pareto family of distributions.

2.2.2 Pareto distribution

The random variable X is Pareto with (positive) parameters α and λ if it has
density function

fX(x) =
αλα

(λ+ x)α+1
, or equivalently, survival function F̄X(x) =

(
λ

λ+ x

)α

for x > 0. The Pareto distribution is named after Vilfredo Pareto (1848−1923)
who used it in modeling welfare economics. Today, it is commonly used to
model income distribution in economics or claim-size distribution in insurance.
In some circumstances, it may be appropriate to consider a shifted Pareto
distribution taking values in an interval of the form (β,+∞).

Like the exponential family of random variables, the Pareto distributions
have density and survival functions which are very tractable. Pareto ran-
dom variables have some nice preservation properties. For example, if X ∼
Pareto(α, λ) and k > 0, then kX ∼ Pareto(α, kλ) since

P (kX > x) = P (X > x/k) =
(

λ

λ+ x/k

)α

=
(

kλ

kλ+ x

)α

.

This property is useful in dealing with inflation in claims. Moreover, if M > 0,
then

P (X > M + x |X > M) =
(

λ

λ+M + x

)α

/

(
λ

λ+M

)α

=
(

λ+M

λ+M + x

)α

,

which implies that ifX > M , thenX−M (or the excess ofX overM) is Pareto
(α, λ + M). This property is useful in evaluating the effect of deductibles
and/or excess levels for reinsurance in handling losses.
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The inverse F−1
X of the distribution function of a Pareto random variable

with parameters α and λ has the form

F−1
X (u) = λ [(1− u)−1/α − 1] for 0 < u < 1.

For any continuous random variable X, U = FX(X) is uniformly distributed
on (0, 1) (and hence the random variables X and F−1

X (U) have the same
probability distribution). Now if U ∼ Uniform (0, 1), then likewise 1−U has
the same distribution. Therefore

X ≡ λ[(1− U)−1/α − 1] ∼ λ(U−1/α − 1)

is Pareto with parameters α and λ. This can be usefully employed in simulat-
ing values from a Pareto distribution. Using the package R, the following code
was used to generate a random sample of size 300 from a Pareto distribution
with α = 3 and λ = 800, and then find its sample mean and variance.

> sample<-800*((runif(n=300))**(-1/3)-1)
> mean(sample)
[1] 378.1911
> var(sample)
[1] 285857.2

WhenX ∼ Pareto(α, λ), one may readily determine the mean (when α > 1)
and variance (when α > 2) by using the expressions E(X) =

∫∞
0
F̄X(x) dx and

E(X2) =
∫∞
0

2x F̄X(x) dx. (Of course, one could also use the more traditional
expressions E(X) =

∫∞
0
x fX(x) dx and E(X2) =

∫∞
0

x2 fX(x) dx, but in this
case the former expressions are more convenient to use.) Now

E(X) =
∫ ∞

0

(
λ

λ+ x

)α

dx

= − λα

(α− 1) (λ+ x)α−1
|∞0

=
λ

α− 1
, and

E(X2) = 2
∫ ∞

0

x

(
λ

λ+ x

)α

dx

=
2λ
α− 1

∫ ∞

0

x
(α− 1)λα−1

(λ+ x)α
dx

=
2λ2

(α− 1)(α− 2)
and therefore

V ar(X) =
2λ2

(α− 1)(α− 2)
−
(

λ

α− 1

)2

=
αλ2

(α− 1)2(α− 2)
.
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Using the method of moments to estimate the parameters α and λ of a
Pareto distribution, one could solve the equations

λ

α− 1
= x̄ and

αλ2

(α− 1)2(α− 2)
= s2,

yielding

α̃ =
2s2

s2 − x̄2
and λ̃ = (α̃− 1) x̄.

Of course, asymptotically, maximum likelihood estimators are preferred, and
for a sample x of n observations from a Pareto distribution the likelihood
function takes the form

L(α, λ) =
n∏

i=1

αλα

(λ+ xi)α+1
.

Differentiating the log-likelihood function l = logL(α, λ) with respect to α and
λ and then solving for α, one finds that the maximum likelihood estimators
must satisfy

∂

∂α
l = 0 =

n

α
+ n log λ−

∑
log(λ+ xi)

⇒ α̂ =
n∑

log(1 + xi/λ̂)
and (2.1)

∂

∂λ
l = 0 =

nα

λ
− (α+ 1)

∑ 1
λ+ xi

⇒ α̂ =
∑

1/(λ̂+ xi)∑
xi/(λ̂(λ̂+ xi))

. (2.2)

Hence the maximum likelihood estimator λ̂ must be a solution of∑
1/(λ̂+ xi)∑

xi/(λ̂(λ̂+ xi))
− n∑

log(1 + xi/λ̂)
= 0,

which may be solved by numerical methods. α̂ may then be found from
Equation (2.1) or (2.2).

For the Theft claim data in Table 2.1, the ML (maximum likelihood) esti-
mates for a Pareto distribution are λ̂ = 1872.13176 and α̂ = 1.88047, while
the MM (method of moments) estimators are λ̃ = 3451.911 and α̃ = 2.70862.
Figure 2.3 plots the ML fitted Pareto density, as well as the ML fitted expo-
nential density relative to the histogram of the Theft claim data.

If X has an Pareto distribution with λ̂ = 1872.13176 and α̂ = 1.88047,
then the probabilities P (X > 8000) = 0.0439, P (X > 10,000) = 0.0310 and
P (X > 20,000) = 0.0098 are much closer to observed relative frequencies
(0.05, 0.025 and 0.01667) of these events for the Theft claim data than the
ML fitted exponential distribution (see Table 2.3).
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FIGURE 2.3
Maximum likelihood Pareto and exponential densities for Theft data.
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2.2.3 Gamma distribution

The gamma family of probability distributions is both versatile and useful.
The gamma function is defined for any α > 0 by Γ(α) =

∫ +∞
0

yα−1 e−y dy,
and has the properties that Γ(n) = (n− 1)Γ(n− 1) and Γ(1/2) =

√
π.

X has a gamma distribution with parameters α and λ (X ∼ Γ(α, λ) ) if X
has density function given by

fX(x) =
λα

Γ(α)
xα−1 e−λx for x > 0.

If X ∼ Γ(α, λ), then MX(t) = [λ/(λ − t)]α for t < λ, E(X) = α/λ and
V ar(X) = α/λ2. The parameter α is often called the shape parameter of
the gamma distribution, while λ is usually called the scale parameter. In a
Poisson process where events are occurring at the rate of λ per unit time, it is
well known that the time Tr until the rth event has a gamma distribution with
parameters r and λ (Tr ∼ Γ(r, λ)). It should be noted that some statistical
texts or software use the reciprocal of the rate as the scale parameter of the
gamma distribution. For example, in the software R the scale parameter is
1/rate. The following R code will generate a plot of a gamma density with
shape parameter α = 5 and rate = 0.04 (or in our terminology scale parameter
25 = 1/0.04):

> x<-seq(0,400,0.01)
> plot(x,dgamma(x,shape=5,scale=25),type="n",
+ ylab="gamma density", main="gamma density + with mean 125 and
variance 3125")
> lines(x,dgamma(x,shape=5,scale=25))

When the shape parameter α = 1, we obtain the exponential distributions.
Moreover, the Γ(r/2, 1/2) distribution is precisely the χ2 distribution with r
degrees of freedom, and hence the gamma family includes both the exponential
and χ2 distributions.

Given a set of random observations of X from a gamma distribution, one
may obtain the method of moments estimators of α and λ as α̃ = x̄2/s2 and
λ̃ = x̄/s2, where x̄ and s2 are, respectively, the mean and variance of the
sample. Unfortunately, there are no closed form solutions for the maximum
likelihood estimators of α and λ. One method for getting around this is
to reparametrize the family. In doing so, one still uses the parameter α, but
instead of using λ one uses the mean µ = E(X) = α/λ as the other parameter.
This is, of course, just a technique of relabeling the parameters, and one still
has the same family of distributions. With this reparametrization, one sets up
and solves (resorting to numerical methods) equations to find the maximum
likelihood estimates for the parameters α and µ. Then using the invariance
property of the method of maximum likelihood, one obtains the maximum
likelihood estimates of α and λ. In this instance, having found α̂ and µ̂, one
obtains λ̂ = α̂/µ̂.

峥 周
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Example 2.1
Let X ∼ Γ(α, µ = α/λ). Then

fX(x) =
αα

µα

1
Γ(α)

xα−1 e−αx/µ when x > 0.

Under this new parametrization for the gamma distribution, the likelihood
function L(α, µ) takes the form

L(α, µ) =
n∏

i=1

αα

µα

1
Γ(α)

xα−1
i e−αxi/µ.

Since
∂l

∂µ
=

nα

µ

(
x̄

µ
− 1
)
,

clearly µ̂ = x̄. Using this value for µ in the likelihood, it follows that α̂ is the
value of α which maximizes

l(α, x̄) = logL(α, x̄)

= nα(logα− log x̄− 1) + (α− 1)
n∑

i=1

log xi − n log Γ(α).

Note then that

−E
(
∂2

∂µ2
log fX

)
= −E

(
∂2

∂µ2

[
log

αα

µα

1
Γ(α)

xα−1 e−αx/µ

])
= E

(
∂

∂µ

[
α

µ
− α

µ2
x

])
= E

(
2α
µ3

x− α

µ2

)
=

2α
µ3

µ− α

µ2
=

α

µ2
.

Similarly,

−E
(
∂

∂α

∂

∂µ
log fX

)
= 0,

and hence for large n,(
α̂
µ̂

)
∼̇ N

([
α
µ

]
,

[
n ·
(
−E(∂2 log fX/∂α

2) 0
0 α/µ2

)]−1
)
.

In particular, it follows that asymptotically α̂ and µ̂ are independent.

Using the method of maximum likelihood with the Theft claim data, one
obtains the ML estimates for a gamma distribution (using, for example, the
procedure nlm in R) α̂ = 0.00013 and λ̂ = 1/3244.29450 = 0.00031, while the
MM estimates are α̃ = 0.26162 and λ̃ = 0.00013.
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2.2.4 Weibull distribution

A random variable X is a Weibull random variable with parameters c, γ > 0
(X ∼W (c, γ)) if it has density function

fX(x) = cγxγ−1e−cxγ

, or equivalently, F̄X(x) = e−cxγ

for x > 0.

The parameters c and γ are often called the scale and shape parameters for the
Weibull random variable, respectively. If the shape parameter γ < 1, then
the tail of X is fatter (heavier) than that of any exponential distribution,
but not as heavy as that of a Pareto. When γ = 1, then X is exponential
with parameter c. The Weibull distribution is one of the so-called extreme
value distributions in that it is one of the possible limiting distributions of the
mimimum of independent random variables.

The Weibull distribution is named in honor of the Swedish engineer Waloddi
Weibull (1887− 1979). Weibull was an academic, an industrial engineer and
a pioneer in the study of fracture, fatigue and reliability. The Weibull dis-
tribution was first published in 1939, and has proven to be an invaluable
tool in the aerospace, automotive, electric and nuclear power, electronics and
biotechnical industries.

A particularly nice property of the Weibull distribution is the functional
form of its survival function, which has led to its common use in modeling
lifetimes. Another attractive aspect is that the failure or hazard rate function
of the Weibull distribution is of polynomial form since

rX(x) =
fX(x)
F̄X(x)

=
cγxγ−1e−cxγ

e−cxγ = c γ xγ−1.

If X ∼W (c, γ) and Y = Xγ , then

P (Y > x) = P (X > x1/γ) = e−cx for any x > 0,

and hence Y is exponential with parameter c. This enables one to easily
determine the moments of X since

E(Xk) = E(Y k/γ)

=
∫ ∞

0

yk/γ c e−cy dy

=
1
ck/γ

∫ ∞

0

wk/γ e−wdw (using w = cy)

=
1
ck/γ

Γ
(

1 +
k

γ

)
.

Example 2.2
The survival time X (in years) for a patient undergoing a specified surgical
procedure for bowel cancer is modeled by a Weibull random variable X ∼
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W (c = 0.04, γ = 2). We determine P (X ≤ 5), E(X) and V ar(X).

P (X ≤ 5) =
∫ 5

0

1
25

2x2−1 e−x2/25 dx = FX(5) = 1− e−52/25 = 0.6321.

Moreover, since in this case c = 0.04 and γ = 2, we have

E(X) = Γ(1 +
1
2
)/(1/25)1/2 = 5

1
2

Γ
(

1
2

)
= 2.5

√
π = 4.4311 and

V ar(X) =
1
c2/γ

[
Γ
(

2 + γ

γ

)
− Γ2

(
1 + γ

γ

)]
= 25

[
Γ(2)−

(√
π

2

)2
]

= 25
(
1− π

4

)
= 5.365.

The gamma function plays an important role in determining the moments
of a Weibull random variable, and hence using the method of moments can
sometimes be numerically challenging in solving for the parameters c and γ.
However, an analogous method, sometimes called the method of percentiles,
(M%), can be easier to employ. In this (only occasionally used) method, one
equates sample quantiles to theoretical ones, and then solves for the unknown
parameters. For the Weibull distribution we want to estimate the two param-
eters c and γ. Let x̃0.25 and x̃0.75 be the first and third sample quartiles of
the given data set (hence in particular, 25% of the sample values lie below
x0.25). Estimates c̈ and γ̈ of c and γ, respectively, may be obtained by solving
the equations

F̄X(x̃0.25) = exp(−c x̃γ
0.25) = 0.75 and

F̄X(x̃0.75) = exp(−c x̃γ
0.75) = 0.25.

For the 120 Theft claim data (see also summary(Theft) given in Section 2.1),

x̃0.25 = 0.25(265) + 0.75(273) = 271 and
x̃0.75 = 0.75(1720) + 0.25(1772) = 1733.

On using these sample quantiles one obtains for the Theft data that c̈ =
0.002494 and γ̈ = 0.847503. We will see later (using a chi-square goodness-
of-fit test) that the resulting Weibull distribution does not provide a good fit
for the Theft claim data.

The maximum likelihood estimates are given by ĉ = 0.00518 and γ̂ =
0.71593. Figure 2.4 gives a plot of the ML fitted Pareto and Weibull densi-
ties for the Theft claim data superimposed on a relative frequency histogram
of the data. Both appear to resemble the histogram well, with the Pareto
distribution seemingly slightly better (see also Table 2.3).
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FIGURE 2.4
Maximum likelihood Pareto and Weibull densities for Theft data.

2.2.5 Lognormal distribution

A random variable X has the lognormal distribution with parameters µ and
σ2 if Y = logX ∼ N(µ, σ2). Letting g(Y ) = eY = X, the density function
fX may be determined from that of Y as follows:

fX(x) = fY (log x) |[g−1(x)]′| =
[

1√
2πσ

e−(log x−µ)2/2σ2
]

1
x

for x > 0.

Using the expression for the moment generating function of a normal random
variable, one can determine the mean and variance of X as follows:

E(X) = E(eY ) = MY (1) = eµ1+σ212/2 = eµ+σ2/2, and

V ar(X) = E(X2)− E2(X) = E(e2Y )−
(
eµ+σ2/2

)2
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= MY (2)− e 2µ+σ2
= e 2µ+2σ2

− e 2µ+σ2

= e2µ+σ2
[
eσ2

− 1
]

= E2(X)
[
eσ2

− 1
]
.

The lognormal distribution is skewed to the right, and is often useful in mod-
eling claim size.

The lognormal density function fX with parameters µ and σ2 satisfies the
following integral equation, which will be useful in determining excess of loss
reinsurance arrangements when claims are lognormal:∫ M

0

x fX(x) dx =
∫ M

0

elog x 1√
2πσ

e−(log x−µ)2/2σ2 1
x
dx

=
∫ M

0

1√
2πσ

e−[−2σ2 log x+(log x−µ)2]/2σ2 1
x
dx

=
∫ log M

−∞

1√
2πσ

e−[−2σ2 w+(w−µ)2]/2σ2
dw (where w = log x)

=
∫ log M

−∞

1√
2πσ

e−[(w−[µ+σ2])2−2σ2 µ−σ4]/2σ2
dw

= eµ+σ2/2

∫ log M

−∞

1√
2πσ

e−(w−[µ+σ2])2/2σ2
dw

= eµ+σ2/2 Φ
(

logM − µ− σ2

σ

)
, (2.3)

where Φ is the distribution function for the standard normal distribution.
In trying to find a lognormal distribution to model a loss (or claim) dis-

tribution, one commonly uses either the method of moments or the method
of maximum likelihood to estimate the parameters µ and σ2. One important
observation to make (see Problem 17a) is that when Y = log X is normal
with mean µ and variance σ2, then given a sample of n observations x, the
maximum likelihood estimates of these parameters are µ̂ =

∑
log(xi)/n and

σ̂2 =
∑

(log xi − µ̂)2/n.
Revisiting the Theft claim data, let us consider trying to model this data

with a lognormal density. The maximum likelihood estimates are given by
µ̂ = 6.62417 and σ̂2 = 2.30306. Figure 2.5 gives a normal quantile plot
for the transformed log Theft claim data, while Figure 2.6 gives a plot of
the ML estimated lognormal density function overlaying the histogram of the
original Theft claim data. Some tail probabilities for the ML fitted lognormal
distribution are given in Table 2.3. All of these results give some support for
using a lognormal distribution to model the Theft claim data.

Example 2.3
Data (in grouped format) for automobile damage claims in ($000′s) during
the year 2005 for a fleet of rental cars are given in Table 2.2. We will use the



CLASSICAL LOSS DISTRIBUTIONS 49

−2 −1 0 1 2

2
4

6
8

10

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

FIGURE 2.5
Normal Q-Q plot of log(Theft) data.

method of moments (MM) to fit a lognormal distribution to the data and use
it to estimate the (future) proportion of such claims which will exceed 20,000
and 15,000, respectively.

As the data is in grouped form, we estimate the mean and variance of a
typical claim X by

E(X) .= 2
81
325

+ 6
124
325

+ 10
65
325

+ 14
33
325

+ 18
14
325

+ 22
5

325
+ 26

3
325

= 7.563077 (000′s), and

V ar(X) .= 22 81
325

+ 62 124
325

+ 102 65
325

+ 142 33
325

+ 182 14
325

+ 222 5
325

+262 3
325

− (7.563077)2 = 25.076791 (000,000′s).
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FIGURE 2.6
ML fitted lognormal density and histogram of Theft data.

TABLE 2.2

Grouped data on automobile damage.
Group Claim interval Observations

1 [ 0, 4) 81
2 [ 4, 8) 124
3 [ 8, 12) 65
4 [12, 16) 33
5 [16, 20) 14
6 [20, 24) 5
7 [24, 28) 3
8 [28, ∞) 0

Using the method of moments, we solve

eµ+σ2/2 = 7563.077 and e2µ+σ2
(eσ2

− 1) = 25,076,791
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to find µ̃ = 8.74927 and σ̃2 = 0.36353.
Therefore we use the model logX ∼̇ N(8.74927, 0.36353), and estimate

P (X > 20,000) = 1− Φ
(

log 20,000− 8.74927
0.60294

)
= 0.02779.

Similarly, we obtain P (X > 15,000) = 0.07533. These may be compared with
the (approximated) observed frequencies of 8/325 = 0.02462 and 30.25/325 =
0.09308, respectively.

2.3 Fitting loss distributions

Fitting a probability distribution to claims data can be both an interesting
and a challenging exercise. When trying to fit a distribution to claims data, it
is well worth remembering the famous quote of George Box [8] “All models are
wrong, some models are useful.” In the previous section we have discussed the
methods of maximum likelihood (ML), moments (MM) and percentiles (M%)
in estimating parameters of some of the more classic loss distributions. But
how do we ultimately decide on the particular type of distribution and esti-
mation method to use, and whether or not the resulting distribution provides
a good fit?

Exploratory Data Analysis (EDA) techniques (histograms, qqplots, box-
plots) can often be useful in investigating the suitability of certain families
of distributions. In attempting to fit the Theft claim data we have already
seen (Figures 2.3 and 2.4) that the ML fitted Pareto and Weibull densities
seem to be good approximations to a histogram of the data, while the ML
fitted exponential does not. The Q-Q (quantile-quantile) normal plot and
the plot of the ML fitted lognormal density in Figures 2.5 and 2.6 give some
support to the use of a lognormal distribution for the Theft data. Given the
importance of the tails in fitting a loss distribution to data, it can sometimes
be useful to compare observed tail probabilities with those determined from
various competing fitted distributions. Table 2.3 gives three tail probabilities
for the eight distributions we have fitted in the previous section. Although
these specific tails have been selected somewhat arbitrarily, they do suggest
that the (ML) exponential and (M%) Weibull fitted distributions are doing
a poor job of estimating tail behavior, while the fitted Pareto (ML or MM),
Weibull (ML) and lognormal (ML) distributions have acceptable behavior.

These techniques for analyzing fit are exploratory, and one would also usu-
ally make use of one or more of the traditional classic methods to test fitness
such as the Kolmogorov–Smirnoff (K–S), Anderson–Darling (A–D), Shapiro–
Wilk (S–W) or chi-square goodness-of-fit tests. The K–S and A–D tests are
used to test continuous distributions (the S–W for testing normality), while
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TABLE 2.3

Observed frequencies and tail probabilities for distributions fitted to Theft
data.
Method Distribution P (X > 8,000) P (X > 10,000) P (X > 20,000)

ML exponential 0.0191 0.0071 0.0001
ML Pareto 0.0439 0.0310 0.0098
MM Pareto 0.0388 0.0251 0.0056
ML Weibull 0.0397 0.0230 0.0020
M% Weibull 0.0063 0.0022 0.0000
ML gamma 0.0375 0.0190 0.0007
MM gamma 0.0679 0.0469 0.0088
ML lognormal 0.0597 0.0442 0.0154

Observed frequency 0.0500 0.0250 0.0167

the chi-square goodness-of-fit test can be used to test both continuous and
discrete distributions.

A natural estimator for the theoretical distribution function F underlying
any sample x is the empirical cumulative distribution function (ecdf) defined
by

F̂n(x) = [#xi ≤ x]/n.

The ecdf describes any data set precisely, and when one has a very large
amount of data there is certainly justification in using this as a basis for
statistical inference. However, there is often considerable aesthetic (and also
some practical) appeal in modeling data with a classic loss distribution such
as a Pareto, Weibull, gamma or lognormal.

2.3.1 Kolmogorov–Smirnoff test

The Kolmogorov–Smirnoff (K–S) test is useful in testing the null hypothesis
H0 that a sample x comes from a probability distribution with cumulative
distribution function (cdf) F0. The (two-sided) K–S test rejects the hypothesis
H0 if the maximum absolute difference dn between F0 and the ecdf F̂n given
in Equation (2.4) is large.

dn = sup−∞<x<∞ | F̂n(x)− F0(x) | (2.4)

A strength of the K–S test is that it is nonparametric and the null distribution
of dn is the same for all continuous distribution functions F0. Hence one set
of critical values (which are widely available) are appropriate for using this
test. On the other hand, its omnibus nature as a test has its weaknesses, and
in particular is often not good at detecting tail discrepancies (the upper tail
of a loss distribution is usually of considerable interest).
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The K–S test is invariant under transformations – in particular you can
test that a data set x comes from a distribution with cdf F0, or, equivalently,
that the transformed sample data F0(x) comes from a uniform distribution
on [0, 1]. The Kolmogorov–Smirnoff test that the Theft data comes from an
(ML fitted) exponential distribution can be obtained in S+ or R as follows:

> ks.test(1-exp(-Theft/mean(Theft)), "punif")
One-sample Kolmogorov-Smirnov test

data: 1 - exp(-Theft/mean(Theft)) D =0.2013,p-value=0.0001192
alternative hypothesis: two.sided
%Warning message: cannot compute correct p-values
%with ties in: ks.test(Theft, "pexp", 1/mean(Theft))

which gives the same result as testing that the data set Theft is exponential
with rate parameter 1/mean(Theft):

> ks.test(Theft, "pexp",1/mean(Theft))
One-sample Kolmogorov-Smirnov test

data: Theft D = 0.2013, p-value = 0.0001192
alternative
hypothesis:two.sided

Note that the K–S test statistic is 0.2013, representing the distance between
the empirical distribution function for the Theft claim data and the ML fitted
exponential distribution. Figure 2.7 shows that this distance occurs at the
observation (or claim size) 1395.

The K–S test for the ML Pareto fitted distribution yields:

> ks.test(1-(1872.13176/(1872.13176+Theft))**(1.880468),"punif")
One-sample Kolmogorov-Smirnov test

data: 1 - (1872.13176/(1872.13176 + Theft))^(1.880468)
D = 0.0561, p-value = 0.8443 alternative hypothesis: two.sided

The K–S statistic is 0.0561 with a corresponding p-value of 0.8443. This
suggests a much better fit for the (ML fitted) Pareto distribution, and this is
illustrated in Figure 2.8.

The Anderson–Darling (A–D) test is a modification of the Kolmogorov–
Smirnoff test which gives more weight to the tails of the distribution. It
is therefore also a more sensitive test, but has the disadvantage that it is
not a nonparametric test, and critical values for the test statistic must be
calculated for each distribution being considered. Many software packages
now tabulate critical values for the A–D test statistic when testing the fitness
of distributions such as normal, lognormal, Weibull, gamma, etc. The A–D
test statistic A2

n for a sample x of size n from the null distribution function
F0 (and corresponding density function f0) is given by

A2
n = n

∫ +∞

−∞

[F0(x)− F̂n(x)]2

F0(x)[1− F0(x)]
f0(x) dx.
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FIGURE 2.7
Kolmogorov–Smirnoff test for ML exponential fit with the Theft data ecdf.

2.3.2 Chi-square goodness-of-fit tests

The chi-square goodness-of-fit test is often used to test the how well a specified
probability distribution (either discrete or continuous) fits a given data set.
In theory, the test is an asymptotic one where the test of fit for a particular
distribution is essentially reduced to a multinomial setting. In practice, when
testing the fit of a continuous distribution, the data are usually first binned
(or grouped) into k intervals of the form Ii = [ci, ci+1), for i = 1, . . . , k,
although this clearly involves losing information in the sample! Then, based
on the grouped data, the number of expected observations Ei is calculated
and compared with the actual observed numbers Oi for each interval. A
measure of fit of the hypothesized null distribution is then obtained from the
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FIGURE 2.8
Kolmogorov–Smirnoff test for ML Pareto fit with the Theft data ecdf.

test statistic

χ2
GF =

k∑
1

(Oi − Ei)2/Ei, (2.5)

which compares observed and expected values. Large values of the test statis-
tic χ2

GF lead one to reject the null hypothesis under consideration since they
indicate a lack of fit between what was observed and what one might expect.
What is meant by a large value in this context is one which is large relative to
a χ2 distribution (introduced by Karl Pearson in 1900) with an appropriate
number of degrees of freedom d. If the null hypothesis completely specifies the
distribution, then the appropriate number of degrees of freedom is d = k− 1.
If parameters must be estimated from the data (grouped or not), then the
number of degrees of freedom depends on the method of estimation. In prac-
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tice, one often estimates the r parameters in question for the null distribution
from the (original) data, and then subtracts one degree of freedom for each
such parameter. One then rejects the null hypothesis if χ2

GF is large relative
to the χ2 distribution with d = k − 1− r degrees of freedom. Strictly speak-
ing, this approach is valid if, when given the k intervals, one estimates the
parameters using maximum likelihood on the grouped data.

For example, if the null hypothesis is that the distribution is exponential
with parameter λ, then the maximum likelihood estimate λ̂G using grouped
data with k = 10 intervals is the value of λ which maximizes the likelihood

10∏
i=1

[
e−λ ci − e−λ ci+1

]Oi
,

where there are Oi observations in the ith interval Ii = [ci, ci+1) for i =
1, . . . , 10. Normally, λ̂G 6= λ̂ = 1/x̄. Letting θ̂i denote the maximum likeli-
hood estimate of an observation in Ii, one then calculates

Ei = n θ̂i = n [e−λ̂G ci − e−λ̂G ci+1 ]

as the expected number of observations in the ith interval Ii. The chi-square
test statistic χ2

GF =
∑10

1 (Oi − Ei)2/Ei is calculated and then one finds the
probability of a larger (more extreme) result from a χ2

10−1−1 = χ2
8 distribu-

tion.
What often happens in practice is that the probabilities θ̂i are calculated us-

ing the method of maximum likelihood on the full (as opposed to the grouped,
interval or binned) data, and then the chi-square statistic is calculated. In
reality, when the parameters are estimated in this way, this test is probably
conservative (leading to rejection more often than it should). It has been
shown (see [13], [16], [31] and [33]), however, that in this situation the appro-
priate number of degrees of freedom d is bounded by k − 1 and k − 1 − r as
expressed by

F̄χ2
k−1−r

(t) ≤ P (χ2
GF > t) ≤ F̄χ2

k−1
(t). (2.6)

Hence it is generally advisable to compare the test statistic with both the
χ2

k−1 and χ2
k−1−r distributions.

In the use of the chi-square test statistic, one normally requires moderately
large values of the expected counts Ei, and a frequently used rule of thumb is
that each should be at least 5. If this is not the case, then one should consider
joining adjacent bins. Moore [42] summarizes other rules of thumb, including
the rule where one needs all Ei ≥ 1 and at least 80% of the Ei ≥ 5. The
chi-square test is also sensitive to the choice (and number) of bins, but most
reasonable choices lead to similar conclusions (see [42] for recommendations).
The use of equiprobable bins is often suggested as a way of avoiding some of
the arbitrariness in choice.
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2.3.2.1 Fitting a distribution to the Theft data

Can we find a reasonable fit to our Theft data with one of the classic loss distri-
butions? Previous considerations suggest that the ML fitted Pareto, Weibull
or lognormal distributions are still possible candidates! We now proceed to
test these (and the others considered) via a chi-square goodness-of-fit test.

As a starting point, the data of 120 theft claims (Table 2.1) was broken into
10 equiprobable intervals as determined by the ML fitted Pareto distribution,
and the resulting intervals are given in Table 2.4. That is, using the ML
estimates λ̂ = 1872.132 and α̂ = 1.880 (rounded to 3 decimal places), and
solving (λ̂/[λ̂ + ci])α̂ = (11 − i)/10 for i = 1, . . . , 10, one obtains the left-
hand break points of the intervals. For example, c2 = 107.92 = λ̂ ([(11 −
2)/10]−1/α̂− 1). Given that the intervals are of equal probability 1/10 for the
ML fitted Pareto distribution, the expected numbers (E) are all equal to 12.
Using the same intervals, the expected number of observations for the other
proposed distributions are calculated. For instance, using the ML Weibull
fitted distribution (ĉ = −0.00518 and γ̂ = 0.71593), the expected number of
observations in the second interval (c2, c3) is

120 [e−ĉ cγ̂
2 − e−ĉ cγ̂

3 ] = 10.87614.

The values of the χ2 test statistics and their p-values relative to the χ2
10−1−2 =

χ2
7 (χ2

8 for the exponential) distribution are given in the last two rows of Table
2.4. These results suggest that the best choice of a model is a Pareto (using
ML), but that the lognormal is also a possibility.

TABLE 2.4

Observed and expected values for fitting classic distributions to Theft data.
Distribution → Pareto exp gamma Weibull LN
Method → ML MM ML ML MM ML M% ML
Interval O E E E E E E E E
( 0.00, 107.92) 11 12 9.60 6.24 15.88 43.30 16.50 14.82 12.03
( 107.92, 235.93) 14 12 10.08 6.98 9.58 9.65 10.88 12.26 14.64
( 235.93, 391.11) 9 12 10.60 7.89 8.80 7.24 9.89 11.88 13.29
( 391.11, 584.51) 12 12 11.17 9.03 8.78 6.33 9.64 11.93 12.09
( 584.51, 834.68) 10 12 11.81 10.47 9.20 6.03 9.81 12.22 11.20
( 834.68, 1175.81) 14 12 12.50 12.33 10.05 6.11 10.31 12.65 10.61
(1175.81, 1679.79) 18 12 13.25 14.80 11.43 6.61 11.22 13.13 10.32
(1679.79, 2534.73) 11 12 13.99 18.03 13.64 7.73 12.67 13.40 10.39
(2534.73, 4499.51) 6 12 14.49 21.28 17.12 10.31 14.93 12.37 11.10
(4499.51, +∞) 15 12 12.52 12.94 15.53 16.70 14.16 5.34 14.33
χ2 Stat → 8.67 10.30 26.78 17.88 67.36 14.42 25.45 10.84
p-value∗ → 0.28 0.17 ∗ ∗ ∗ 0.01 ∗ ∗ ∗ 0.04 ∗ ∗ ∗ 0.15

∗(∗ ∗ ∗ = p-value < 0.001)
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2.3.3 Akaike information criteria

Another criterion which is often used in fitting a model is the AIC or Akaike
Information Criterion. The AIC of one or several fitted model objects for
which a log-likelihood value can be obtained is given by

AIC = −2(log-likelihood) + s · r,

where r represents the number of parameters in the fitted model and s = 2
for the usual AIC, or s = log n (n being the number of observations) for the
so-called BIC or SBC (Schwarz’s Bayesian criterion). When comparing fitted
objects, the smaller the AIC, the better the fit.

2.4 Mixture distributions

There are many situations where a classical parametric distribution may not
be appropriate to model claims, but where a mixture of several such distri-
butions might do very well! If F1 and F2 are two distribution functions and
p = 1 − q ε (0, 1), then the p : q mixture of F1 and F2 has the distribution
function F defined by

F (x) = pF1(x) + q F2(x).

If in the above, X,X1 and X2 are random variables with respective distri-
bution functions F, F1 and F2, then we say that X is a p : q mixture of the
random variables X1 and X2.

Example 2.4

Let U1 and U2 be uniform random variables on the intervals [0, 1] and [9, 10],
respectively. We define U to be the 0.5 : 0.5 mixture of U1 and U2, and
V = (U1 + U2)/2. We may imagine that there is a random variable I taking
the values 1 and 2 with probability 0.5 each, such that if I = i then U = Ui

for i = 1, 2. It is important to note that although

E(U) = EI(E(U | I)) = E(U1) (1/2) + E(U2) (1/2)
= 5
= [E(U1) + E(U2)]/2
= E(V ),

U and V are very different random variables. In fact, the range of U is
[0, 1] ∪ [9, 10], while that of V is [4.5, 5.5].
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More generally, one may mix any (including an infinite) number of distribu-
tions. For example, suppose that for every θ in the set Θ there is a distribution
Fθ. If G is a probability distribution on Θ (with corresponding density g),
then we can define the mixture distribution F by

F (x) =
∫

Θ

Fθ(x) dG(θ) =
∫

Θ

Fθ(x) g(θ) dθ.

In Example 2.4, there were only two distributions F1 and F2, and G put an
equal weight on each.

Although in theory one can form mixtures of many types (and numbers)
of random variables, in some cases mixtures from classic families yield well-
known distributions. The following is an interesting example often used to
model the situation when the random variable X represents the number of
(annual) claims arising from a randomly selected policyholder. Conditional
on knowing the claim rate (say λ) for the individual in question, one might
model the number of claims by a Poisson random variable with parameter
λ. However, in most cases it is not fair to assume that the claim rate is
constant amongst policyholders. One might assume that the possibilities for
λ vary over (0,∞) according to some probability (prior) distribution. The
gamma family of distributions is both versatile and mathematically attractive.
If one can assume that the variability in the claim rate λ obeys a Γ(α, β)
distribution, then the following shows that the resulting X has a negative
binomial distribution.

Example 2.5

P (X = x) =
∫ ∞

0

P (X = x | λ) dGΛ(λ)

=
∫ ∞

0

λxe−λ

x!
βαλα−1e−λβ

Γ(α)
dλ

=
βα

Γ(α) x!
Γ(α+ x)
(β + 1)α+x

=
Γ(α+ x)
Γ(α) x!

(
β

β + 1

)α( 1
β + 1

)x

Hence X, which is a Γ(α, β) mixture of Poisson random variables, has in fact
a negative binomial distribution with parameters α (which need not be an
integer) and p = β/(β + 1). We denote this by X ∼ NB(α, p). If α is an
integer, then X may be interpreted as the random variable representing the
number of failures X until the αth success in a sequence of Bernoulli trials
with success probability p.

It is not clear that this interpretation of X (as being negative binomial)
is of any practical use in the context of the number of claims a randomly
selected individual might make! In Problem 24, the reader is asked to fit
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both a Poisson (where claim rates are assumed to be constant or homoge-
neous over policyholders) and a negative binomial distribution to claims data
and comment on the relative fits. (Note that there are two commonly used
definitions of the negative binomial distribution X with parameters k and p.
In our case, X represents the number of failures to the kth success while it
is also sometimes defined to be the number of trials to the kth success (see
Subsection 3.2.2.3).

The following R code generated a sample of 10, 000 “claim numbers” from a
portfolio of policyholders where the claim rate parameter λ varies according to
a gamma distribution with mean 5/[1/0.04] = 0.2 and variance 5/[1/0.04]2 =
0.008.

> x<-c(rep(0,10000))
> for (i in 1:10000){ x[i]<-rpois(n=1,
lambda=rgamma(n=1,scale=.04,shape=5))}

> table(x)
x

0 1 2 3 4
8237 1549 192 21 1
> mean(x) [1] 0.2
> var(x) [1] 0.2122212

Table 2.5 gives some of the better known mixture distributions. The gen-
eralized Pareto distribution X with parameters (k, λ, δ) has density function

fX(x) =
Γ(α+ k) δα

Γ(α) Γ(k)
xk−1

(δ + x)α+k
for x > 0.

TABLE 2.5

Some common mixture distributions.
θ X| θ distribution Mixing distribution X distribution

λ Poisson (λ) λ ∼ Γ(α, β) NB (α, p = β/(1 + β))
p B(n, p) p ∼ Beta (α, β) Beta Bin (n, α, β)
λ Exponential λ λ ∼ Γ (α, δ) Pareto (α, δ)
λ Γ(k, λ) λ ∼ Γ (α, δ) Gen. Pareto (k, α, δ)
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2.5 Loss distributions and reinsurance

As policyholders buy insurance to obtain security from risks, so too an insur-
ance company buys reinsurance to limit and control its own exposure to risk.
One of the benefits of reinsurance is that it allows the insurer to expand its
own capacity to take on risk. In transferring some of its risk to a reinsurer
(or in some cases to several reinsurance companies), the insurance company
is said to cede some of its business to the reinsurer, and hence is sometimes
referred to as the cedant (although, for the most part, we shall use the term
baseline insurance company). There are usually various types of reinsurance
contracts available to an insurance company which broadly speaking fall into
two categories – those (claim based) that are based on the sharing of risk per
claim, and those (aggregate based) that are based on an agreement concerning
the total or aggregate claims.

In proportional reinsurance, the baseline (or ceding) insurance company
cedes to the reinsurance company an agreed proportion or percent of each
claim. When the proportion varies between policies or contracts, this is some-
times referred to as quota reinsurance. In proportional or quota reinsurance,
the reinsurer is normally involved in all claims, and this may lead to consid-
erable administrative costs for the reinsurer. In some cases, the insurer must
be careful not to cede too much of the business to the reinsurer in order to
remain solvent. Surplus reinsurance, where only a proportion of each of the
larger claims are ceded to the reinsurer, is another type of reinsurance which
addresses this concern. For example, there may be a retention level M , such
that the reinsurer pays only a part of those claims (often subject to limits)
which exceed M . Another common type of reinsurance which is individual
claim based is excess of loss reinsurance. In this type of arrangement, the
reinsurance company covers the excess of any individual claim over an agreed
amount (called the excess or retention level M), and hence is involved in only
a fraction (F̄X(M)) of the claims.

In this section, we investigate the division of a claim resulting from a claim-
by-claim based reinsurance arrangement, while in Chapter 3 on risk theory
we consider the impact of reinsurance on aggregate claims. In a claim-by-
claim based reinsurance agreement, each individual claim X is split into two
components,

X = Y + Z = hI(X) + hR(X),

which are, respectively, handled by the insurance (Y = hI(X)) and reinsur-
ance (Z = hR(X)) companies.
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2.5.1 Proportional reinsurance

In proportional reinsurance, hI(X) = Y = αX and hR(X) = Z = (1 − α)X
for some 0 ≤ α ≤ 1. An interesting property shared by the classic loss
distributions we have considered (exponential, Pareto, gamma, Weibull and
lognormal) is that they are closed under multiplication by a positive scalar
factor (and hence are called scale invariant). In other words, if the random
loss X belongs to one of these families and k > 0, then so does kX. Hence if
X belongs to any one of these families, so do both of the proportions Y = αX
and Z = (1− α)X handled by the insurer and reinsurer!

2.5.2 Excess of loss reinsurance

In an excess of loss agreement (or treaty) with a reinsurer, the reinsurer
handles the excess of each claim X over an agreed excess level M . We may
write hI(X) = Y = min(X,M) and hR(X) = Z = max(0, X −M). In other
words, X = Y + Z, where Y is the amount paid by the (baseline) insurance
company and Z is that paid by the reinsurer with

Y =
{
X if X ≤M
M if X > M

and Z =
{

0 if X ≤M
X −M if X > M

.

In introducing an excess of loss reinsurance agreement with excess level M ,
the expected payment per claim for the insurer is reduced from E(X) to

E(Y ) =
∫ M

0

x fX(x) dx+M F̄X(M)

= E(X) −
∫ ∞

M

x fX(x) dx+M F̄X(M)

= E(X) −
∫ ∞

M

(x−M) fX(x) dx

= E(X) −
∫ ∞

0

y fX(y +M) dy (letting y = x−M).

If X is an exponential random variable with parameter λ and M is the excess
level, then

E(Y ) =
1
λ

(1− e−λM ).

Hence by using an excess level of M = (log 4)E(X) = (log 4) /λ, the insurance
company can reduce its average claim payment by 25% since

E(Y ) =
1
λ

(1− e−λ(log 4)/λ) = (0.75)
1
λ
.

When an excess of loss contract has been agreed, the insurer is really only
interested in Y = max(X,M) for any loss X, and hence one might view the
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claims data for the insurer as a censored sample of n+m losses of the form

x = x1, x2,M, x4,M, x6, x7,M, . . . ,

where m is the number of censored losses (exceeding M) and n is the number
of uncensored (≤ M) losses. Therefore, in trying to estimate the parameters
θ of an appropriate loss distribution, one would maximize the log-likelihood
function given by

L(θ) =
n∏
1

fX(xi, θ)
m∏
1

F̄X(M, θ).

For example, in the exponential case,

L(λ) =
n∏
1

λe−λxi

m∏
1

e−λM

and hence

∂

∂λ
logL(λ) =

∂

∂λ

[
n log λ− λ (

n∑
1

xi +mM)

]
= 0

⇒ λ̂ =
n∑n

1 xi +mM
.

2.5.2.1 The reinsurer’s view of excess of loss reinsurance

Let us now consider excess of loss reinsurance from the point of view of the
reinsurer. Representing a typical claim X in the form X = Y +Z, the part of
the claim Z paid by the reinsurer is 0 with probability FX(M). The reinsurer
is, however, more likely to be interested in the positive random variable ZR,
which is the amount of a claim it has to pay in the case (that is, conditional
on) X > M . One may view Z as a mixture of 0 and ZR, and hence

E(Z) = 0 · FX(M) + E(ZR) F̄X(M) = E(ZR)P (X > M).

Now

F̄ZR
(z) = P (X > M + z | X > M) =

F̄X(M + z)
F̄X(M)

,

and on differentiating with respect to z (and multiplying by −1), one obtains

fZR
(z) =

fX(z +M)
F̄X(M)

for z > 0.

In the special case where X is exponential with parameter λ,

fZR
(z) =

λe−λ(z+M)

e−λM
= λe−λz,
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which is not surprising due to the lack of memory property of the exponential
distribution.

If X has a Pareto distribution with parameters α and λ, then the density
function of ZR takes the form

fZR
(z) =

αλα/(λ+ z +M)α+1

λα/(λ+M)α
=

α(λ+M)α

(λ+ z +M)α+1
.

That is, ZR is Pareto with parameters α and λ+M and mean (λ+M)/(α−1)
when α > 1. Furthermore, if X = Y + Z, then

E(Y ) = E(X)− E(Z) = E(X)− F̄X(M)E(ZR)

=
λ

α− 1
−
(

λ

λ+M

)α
λ+M

α− 1

=
λ

α− 1
− λα

α− 1

(
1

λ+M

)α−1

,

from which it is clear that E(Y ) increases (respectively, E(Z) decreases) with
the excess level M .

2.5.2.2 Dealing with claims inflation

Claim size often increases over time due to inflation, and it is worth investi-
gating how this affects typical payments for the ceding insurer and reinsurer if
the same reinsurance treaty holds. For example, suppose that claims increase
by a factor of k next year, but that the same excess level M is used in an
excess of loss treaty between the insurer and reinsurer. Would one expect
the typical payment for the (ceding) insurer to increase by a factor of k, and
if not, would it be larger or smaller than k? Consequently, how would the
typical payment change for the reinsurer?

On reflection, it is not difficult to see that the typical payment for the
insurer should increase by a factor less than k (and, therefore, the factor for
the reinsurer would be greater than k since the total claim size on the average
increases by k). One may heuristically argue that typically any (small) claim
X less than M/k this year will be kX < M next year, and hence the insurer’s
payment next year on small claims will increase by a factor of k. However,
for any (larger) claim X > M/k this year, the insurer next year will pay
M = min(kX,M) ≤ kX. Hence the increase overall in payment by the
(ceding) insurer is less than k. This assertion is now more formally established.

Suppose that due to inflation next year, a typical claim X = Y + Z next
year will have distribution X∗ = kX, where k > 1. If Y is that part of the
claim X handled by the (ceding) insurer this year, then next year it will be
Y ∗ = g(X) defined by

Y ∗ =
{
kX if kX ≤M
M if kX > M

.
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Then the amount paid by the insurer next year on a typical claim X∗ is

E(Y ∗) =
∫ M/k

0

kx fX(x) dx+
∫ ∞

M/k

MfX(x) dx

= k

[∫ M/k

0

xfX(x) dx+
∫ M

M/k

(M/k) fX(x) dx+
∫ ∞

M

(M/k) fX(x) dx

]

≤ k

[∫ M/k

0

xfX(x) dx+
∫ M

M/k

x fX(x) dx+
∫ ∞

M

M fX(x) dx

]

= k

[∫ M

0

xfX(x) dx+
∫ ∞

M

M fX(x) dx

]
= k E(Y ).

This shows that, in general, E(Y ∗) ≤ k E(Y ), and one might say that the
actual or effective excess level decreases with inflation for the insurer! The
following derivation gives a useful expression for E(Y ∗).

E(Y ∗) =
∫ M/k

0

kxfX(x) dx+
∫ ∞

M/k

MfX(x) dx

= k

∫ ∞

0

xfX(x) dx− k

∫ ∞

M/k

xfX(x) dx+M

∫ ∞

M/k

fX(x) dx

= k E(X)− k

∫ ∞

0

(y +M/k) fX(y +M/k) dy

+M
∫ ∞

0

fX(y +M/k) dy (using y = x−M/k)

= k

[
E(X)−

∫ ∞

0

yfX(y +M/k) dy
]
.

In the case where X is exponential with parameter λ,

E(Y ∗) = k

[
E(X)−

∫ ∞

0

y λ e−λ(y+M/k) dy

]
=
k

λ

[
1− e−λ M/k

]
Example 2.6
A typical claim is modeled by an exponential distribution with mean 100, and
an excess of loss reinsurance treaty is in effect with excess level M = 150. The
expected cost per claim for the insurer under this arrangement is

E(Y ) =
1

0.01
(1− e−0.01(150)) = 77.69.

Suppose now that inflation of 6% is expected for next year, and that the excess
level remains at 150. Then the expected payment per claim next year for the
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insurer is

E(Y ∗) =
k

λ

[
1− e−λ M/k

]
=

1.06
0.01

[
1− e−0.01 (150)/1.06

]
= 80.25,

which is significantly different from kE(Y ) = 1.06(77.69) = 82.35.

2.5.2.3 Policy excess and deductibles

Introducing a deductible into a policy is another form of policy modification
which a company might use to reduce both the number and amount of claims.
One of the most common forms of a deductible is the fixed amount deductible.
In this case, a deductible D is effected, whereby only claims in excess of D are
considered and, therefore, the amount paid by the insurer on a loss of size X is
max(0, X−D). In the proportional deductible, the insured (or insurant) must
pay a proportion α of each claim. For example, in a common form of health
insurance in the USA, the insured pays 20% of any claim. Another form
of a deductible is the minimum or franchise deductible. Here the insured
is compensated for the entire claim X only if X exceeds a deductible D,
otherwise there is no compensation.

The theory behind deductibles is clearly similar to that for claim-based ex-
cess of loss reinsurance treaties (where the relationship between the individual
policyholder and the insurance company parallels that between the baseline
or ceding insurance company and the reinsurer). There are many possible
reasons for introducing deductibles. One such reason is to reduce the number
of small claims made on the insurer. Since such claims are often administra-
tively relatively expensive, a possible consequence of introducing a deductible
is that premiums may be reduced, which in turn makes the product seemingly
more attractive to the market.

Suppose that a deductible of size D is in effect, whereby on a loss of X the
insurance company pays Y given by

Y =
{

0 if X ≤ D
X −D if X > D.

In this situation, the position of the insurer is similar to that of the reinsurer
when an excess of loss reinsurance contract is in effect and it follows that

E(Y ) =
∫ ∞

D

(x−D) fX(x) dx =
∫ ∞

0

y fX(y +D) dy.

Note, however, that here E(Y ) represents the average amount paid by the
insurance company in respect of all losses X, while the average amount paid
in respect of claims actually made (that is, with respect to the losses which
exceed the deductible D) is given by

E(Y | X > D) =
∫ ∞

D

(x−D)
fX(x)
F̄X(D)

dx.
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Example 2.7
Claims (losses) in an automobile insurance portfolio had a mean of 800 and
a standard deviation of 300 last year. Inflation of 5% is expected for the
coming year, and it can be assumed that losses can be modeled by a lognormal
distribution. An excess of loss reinsurance level of 1200 will be increased in
line with inflation, and a policy excess (deductible) of 500 will be introduced.

If we letX be the lognormal random variable representing a typical loss next
year, then E(X) = (1.05)800 = 840 and V ar(X) = [(1.05)300]2 = 99,225.
The new policy excess will be (1.05)1200 = 1260. Solving the equations

eµ+σ2/2 = 840 and e2µ+σ2
eσ2−1 = 99,225,

one finds σ̃ = 0.36273 and µ̃ = 6.66761.
The proportion of incidents involving the reinsurance company is therefore

P (X > 1260) = 1− Φ([log 1260− 6.66761]/0.36273)
= 1− Φ(1.29917)
= 0.09694.

Moreover, the proportion of incidents where no claim will be made (due to
the policy excess) is

P (X < 500) = Φ(−1.24886) = 0.10586.

If Z is the part of the loss X paid by the reinsurer, then

E(Z) =
∫ ∞

1260

(x− 1260)fX(x) dx

= 840−
∫ 1260

0

xfX(x) dx − 1260P (X > 1260)

= 840− 840 Φ
(

log 1260− 6.66761− 0.362732

0.36273

)
− 122.1484

(using Equation (2.3))
= 24.45,

which is the average amount paid by the reinsurer in respect of all incidents.
Letting ZR be the amount paid by the reinsurer if the reinsurer is involved,
then

E(Z) = E(ZR) · P (X > 1260) + 0 · P (X ≤ 1260) = E(ZR) · (0.09694),

from which it follows that E(ZR) = 24.45/0.09694 = 252.24.
If the loss to an insured next year exceeds 500, then she will pay the first

500 while the insurance companies will pay the rest. If U is the part of any
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loss X borne by the insured (policyholder), then

E(U) =
∫ 500

0

xfX(x) dx+ 500(1− 0.10586)

= 840 Φ
(

log 500− 6.66761− 0.362732

0.36273

)
+ 447.0713

= 492.03.

Representing any loss X in the form X = U + Y + Z, where Y is the part
borne by the insurance company, E(Y ) = 840−492.03−24.45 = 323.52.

2.6 Problems

1. The random variableX represents the storm damage to a premises which
has encountered a loss. The insurance company handling such claims
will pay only W , the excess of the damage over $40,000, for any such
damage (i.e., W = X − 40,000 if X > 40,000). The payments made by
the company in 2005 amounted to: $14,000, $21,000, $6,000, $32,000
and $2,000. Assume that the density function for the damage sustained
X takes the form

fX(x) = α 2α 104α (20,000 + x)−α−1 for x > 0

where α is an unknown parameter.

(a) Determine the density function, mean and variance for W , the typ-
ical amount paid by the insurance company (in respect of damage
in excess of $40,000 to a premises).

(b) Using the method of maximum likelihood, find an estimate α̂ of α
based on the 2005 data. Give an estimate for the standard error of
α̂.

(c) Suppose that inflation in 2006 is expected to be 4%. If the excess
level remains at $40,000, what is the average amount the company
will pay on a storm damage claim over $40,000?

2. A claim size random variable X has density function of the form,

fX(x) =
θ

400 + x

(
400

400 + x

)θ

, x > 0

for some unknown θ.
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(a) Find the forms of the method of moments estimator θ̃ and the
method of maximum likelihood estimator θ̂ based on a random
sample of size n.

(b) A sample of 50 claims from last year gave an average of 200. Use
the method of moments to estimate θ. An arrangement with a
reinsurance company has been made whereby the excess of any
claim over 400 is handled by the reinsurer.

i. What proportion of claims will be handled by the reinsurer?
ii. What is the probability distribution and mean value for (pos-

itive) claim amounts handled by the reinsurer?
iii. With this reinsurance arrangement, what is the average amount

paid out by the baseline insurance company on claims made?

3. Eire General Insurance has an arrangement with the reinsurance com-
pany SingaporeRe, whereby the excess of any claim over M is handled
by the reinsurer. Claim size is traditionally modeled by a Pareto dis-
tribution with parameters α and λ = 8400. Show that the maximum
likelihood estimator of α based on a sample of n + m claim payments
(for Eire General) of the form (x1, . . . , xn,M, . . . ,M) takes the form

α̂ = n/

(
n∑
1

log(1 + xi/λ) +m log(1 +M/λ)

)
.

If the amounts paid by Erie General based on a sample of size 10 =
7 + 3 = n+m were

(14.9, 775.7, 805.2, 993.9, 1127.5, 1602.5, 1998.3, 2000, 2000, 2000),

what would the maximum likelihood estimate of α be?

4. A sample of 90 hospital claims of X is observed where x = 5010 and
s2 = 49,100,100. Table 2.6 (of grouped data) was constructed in order
to test the goodness-of-fit of: 1) an exponential model for X, and 2)
a Pareto model for X (using the method of moments). Complete the
table and perform the appropriate χ2 goodness-of-fit tests. Comment
on the adequacy of fit.

5. A claim-size random variable is modeled by a Pareto distribution with
parameters α = 3 and λ = 1200. A reinsurance arrangement has been
made whereby in future years the excess of any claim over 800 is han-
dled by the reinsurer. If inflation next year is to be 5%, determine the
expected amount paid per claim by the insurance company next year.

6. Claims in a portfolio of house contents policies have been modeled by
a Pareto distribution with parameters α = 6 and λ = 1500. Inflation
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TABLE 2.6

Hospital claims data.
Interval Oi (Obs) Ei (Exp) Ei (Pareto-MM)

1 0 - 528 14
2 528 - 1,118 17
3 1,118 - 1,787 9
4 1,787 - 2,559 8
5 2,559 - 3,473 7
6 3,473 - 4,591 12
7 4,591 - 6,032 7
8 6,032 - 8,063 4
9 8,063 - 11,536 5
10 11,536 - +∞ 7

for next year is expected to be 5%, but a $100 deductible is to be
introduced for all claims as well. What will be the resulting decrease in
average claim payment for next year?

7. A claim-size random variable is being modeled in an insurance company
by a Pareto random variableX ∼ Pareto(α = 4, λ = 900). A reinsurance
arrangement has been made for future years whereby the excess of any
claim over 600 is paid by the reinsurer.

(a) Determine the mean reduction in claim size for the insurance com-
pany which is achieved by this arrangement.

(b) Next year, inflation is expected to be 10%. Assuming the same
reinsurance arrangement as for this year, determine the expected
amount paid per claim next year by the insurance company.

8. Claims resulting in losses in an automobile portfolio in the current year
have a mean of 500 and a standard deviation of (

√
2) 500. Inflation of

10% is expected for the coming year and it can be assumed that a Pareto
distribution is appropriate for claim size. A policy excess (or standard
deductible), whereby the company pays the excess of any loss over 200,
is being considered for the coming year. Using the method of moments,
estimate

(a) the % reduction in claims made next year due to the introduction
of the deductible.

(b) the reduction in average claim payment next year due to the de-
ductible.

(c) the reduction in average claim payment next year if the deductible
was in fact a franchise deductible.



PROBLEMS 71

9. The following claim data set of 40 values was collected from a portfolio
of home insurance policies, where x̄ = 272.675 and s = 461.1389.

10 11 15 22 28 30 32 36 38 48 51
55 56 68 68 85 87 94 103 104 105 106

109 119 121 137 178 181 226 287 310 321 354
393 438 591 1045 1210 1212 2423

It is decided to fit a Pareto distribution X ∼ Pareto (α, λ) to the data
using the method of moments. Find these estimates, and use them to
perform a χ2 goodness-of-fit for this distribution by completing Table
2.7.

TABLE 2.7

Interval data on 40 home insurance claims.
Interval Observed Expected
0, 42.594 ∗ 8

42.594, 102.270 ∗ 8
102.270, 196.444 * *
196.444, 322.336 * *
322.336, + ∞ * *

10. A claim-size random variable X has density function fθ(x) = θxe−θx2/2

for x > 0. Determine the method of moments estimator θ̃ of θ based on a
random sample of size n. Show that the maximum likelihood estimator
θ̂ of θ based on a sample of size n takes the form θ̂ = 2n/

∑
X2

i .

11. A random sample of 120 claims was observed from a portfolio, where∑
xi = 9,000 and

∑
x2

i = 420,000. It was decided to test the fit of
the data to (a) an exponential distribution with density θe−θx, and
(b) a Weibull density of the form f(x) = θxe−θx2/2. In both cases,
parameters were estimated using the method of maximum likelihood.
Complete Table 2.8 and test the fitness of the resulting distributions
using chi-square goodness-of-fit tests. Comment on the adequacy of fit.

12. Household content insurance claims are modeled by a Weibull distribu-
tion with parameters c > 0 and γ = 2.

(a) A random sample of 50 such claims yields
50∑
1
xi = 13,500 and

50∑
i=1

x2
i = 4,500,000. Calculate the method of moments estimator c̃

and the method of maximum likelihood estimate ĉ of c using this
information. Determine an approximate 95% confidence interval
for c based on maximum likelihood.
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TABLE 2.8

Portfolio of 120 claims.
Observed Expected

Interval Oi Ei(Exp) Ei (Weibull)
1 [ 0, 7.90] 4 12 2.12
2 [ 7.90, 16.74] 9 12 7.11
3 [ 16.74, 26.75] 14 12 12.95
4 [ 26.75, 38.31] 16 12 18.91
5 [ 38.31, 51.99] 21 12 23.46
6 [ 51.99, 68.72] 22 12 24.30
7 [ 68.72, 90.30] 18 12 19.45
8 [ 90.30, 103.97] 7 ? ?
9 [ 103.97, 172.69] 8 ? ?
10 [ 172.69, +∞ ] 1 ? ?

(b) If a deductible of 200 is introduced, estimate (using maximum like-
lihood) the reduction in the proportion of claims to be made.

13. The 30 claims in Table 2.9 are for vandal damage to cars over a period
of six months in a certain community:

TABLE 2.9

Claims for vandal damage to cars.
38 56 77 110 112 138 152 168 188 210

228 241 252 273 283 288 291 299 305 317
321 356 374 422 485 527 529 559 567 656

Use the method of percentiles (based on quartiles) to fit a Weibull dis-
tribution of the form F (x) = 1 − e−c xγ

to the data. Complete Table
2.10 and perform a chi-square goodness-of-fit test for this Weibull dis-
tribution.

TABLE 2.10

Interval Observed Expected
[ 0, 145] * *
[145, 225] * *
[225, 310] * *
[310, 420] * *
[420,+∞] * *

14. If X ∼ W (c, γ), then determine the form of F−1
X . Use this to write
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R code for generating a random sample of 300 observations from a
W (0.04, 2) distribution. Run the code and compare your sample mean
and variance with the theoretical values.

15. Assume that 3000 claims have occurred in a portfolio of motor policies,
where the mean claim size is $800 and the standard deviation is $350.
Using both a normal and a lognormal distribution to model claim size,
estimate the size of claims, w, such that 150 claims are larger than w
and also the expected number of claims in the sample which are less
than $125. Comment on the results.

16. An analysis of 3000 household theft claims reveal a mean claim size
of 1500 and a standard deviation of 600. Assuming claim size can be
modeled by a lognormal distribution, estimate the proportion of claims
< 1000, and the claim size M with the property that 1000 of the claims
would be expected to exceed M .

17. Suppose that X has a lognormal distribution with parameters µ and σ2.

(a) Show that the ML estimators of these parameters based on a ran-
dom sample of size n take the form:

µ̂ =
∑n

1 log xi

n
and σ̂2 =

∑n
1 [log xi − µ̂]2

n
.

(b) A sample of 30 claims from a lognormal distribution gave

30∑
1

log xi = 172.5 and
30∑
1

(log xi)2 = 996.675.

Using the method of maximum likelihood, estimate the mean size
of a claim, and the proportion of claims which exceed 400.

(c) Let W = kX where k > 0. Show that W is also lognormal and
determine its parameters.

18. On a particular class of policy, claim amounts coming into Surco Ltd.
follow an exponential distribution with unknown parameter λ. A rein-
surance arrangement has been made by Surco so that a reinsurer will
handle the excess of any claim above $10,000. Over the past year, 80
claims have been made and 68 of these claims were for amounts below
$10,000; these 68 in aggregate value amounted to $220,000. The other
12 claims exceeded $10,000.

(a) Let Xi represent the amount of the ith claim from the 68 claims
beneath $10,000. Show that the log–likelihood function is

`(λ) = 68 log λ− λ
68∑

i=1

xi − 120,000λ.
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Hence find λ̂ and calculate an approximate 95% confidence interval
for λ.

(b) Let Z denote the cost to the reinsurer of any claim X, and hence
X = Y + Z. Determine an expression for E(Z) in terms of λ.
Estimate E(Z) using maximum likelihood.

(c) Next year, claim amounts are expected to increase in size by an in-
flationary figure of 5%. Suppose that the excess of loss reinsurance
level remains at $10,000. Let Z∗ represent the cost to the reinsurer
of a typical claim next year. Estimate E(Z∗). Using your answer
in (18a) or otherwise, derive a 95% confidence interval for E(Z∗).

19. The typical claim X in an insurance portfolio has density function

fX(x) = 2x/106 for 0 ≤ x ≤ 1000, and 0 otherwise.

The insurance company handling the claims has made an excess of loss
treaty with a reinsurer with excess level M = 800. If Y represents the
part paid by the ceding company for the claim X, determine E(Y ). If
claims inflation of 5% is expected for next year and the same reinsurance
treaty remains in effect, what will be the expected cost of a claim to the
ceding insurer?

20. Suppose that claims resulting from incidents in a certain automobile
portfolio had a mean of 400 and a standard deviation of 150 last year.
Inflation of 20% is expected for the coming year, and it can be assumed
that claims can be modeled by a lognormal distribution. An excess of
loss reinsurance level of 800 will be increased in line with inflation, and
a policy excess of 300 will be introduced. Estimate

(a) The proportion of incidents where no claim will be made (due to
the policy excess).

(b) The proportion of incidents involving the reinsurance company.

(c) The average amount paid by the reinsurer in respect of all incidents.

(d) The average amount paid by the reinsurer in respect of incidents
which involve the reinsurer.

(e) The average amount paid by the direct insurer in respect of all
incidents.

21. Suppose that claims resulting from incidents in a certain automobile
portfolio had a mean of 400 and a standard deviation of 250 last year.
Inflation of 10% is expected for the coming year, and it can be assumed
that claims can be modeled by a lognormal distribution. An excess of
loss reinsurance level of 1000 will be increased in line with inflation, and
a policy excess of 200 will be introduced. Estimate
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(a) The proportion of incidents where no claim will be made (due to
the policy excess).

(b) The proportion of incidents involving the reinsurance company.

(c) The average amount paid by the reinsurer in respect of all incidents,
as well as the average amount in respect of incidents with which it
is actually involved.

22. Use Kolmogorov–Smirnoff tests to test fitness of the Weibull (ML and
M%) and lognormal distributions to the Theft claim data.

23. In a large population of drivers the accident rate Λ of a randomly se-
lected person varies from person to person according to a Γ(2, 10) ran-
dom variable. If X | [Λ = λ] is the number of accidents a person with
accident rate λ incurs in a year, then assume X | [Λ = λ] is a Poisson
random variable with parameter λ. If X represents the number of ac-
cidents a randomly selected person has in a year, what are E(X) and
V ar(X)?

24. Table 2.11 gives the distribution of the number of claims for different
policyholders in a general insurance portfolio. Fit both the Poisson and
negative binomial distributions to this data, and comment on which
model provides a better fit.

TABLE 2.11

Claims in general insurance
portfolio.
Number of claims Frequency

0 65,623
1 12,571
2 1,644
3 148
4 13
5 1
6 0





3

Risk Theory

3.1 Risk models for aggregate claims

In 1930, Harold Cramér (see [18] and [54]) wrote that “The Object of the
Theory of Risk is to give a mathematical analysis of the random fluctua-
tions in an insurance business and to discuss the various means of protection
against their inconvenient effects.” In our modern world, individuals and com-
panies continually encounter situations of risk where decisions must be made
in the face of uncertainty. Risk theory can be useful in analyzing possible
scenarios as well as options open to the analyst, and therefore assist in the
ultimate decision-making process. For example, in contemplating a new in-
surance product, what is the probability that it will be profitable? What
modifications can one make to the price structure of a product in order to
enhance its profitability, yet at the same time maintain a reasonable degree of
security and competitiveness? In this chapter we investigate various models
for the risk consisting of the total or aggregate amount of claims S payable by
a company over a fixed period of time. Our models will inform us and allow
us to make decisions on, amongst other things: expected profits, premium
loadings, reserves necessary to ensure (with high probability) profitability, as
well as the impact of reinsurance and deductibles.

Assume that S is the random variable representing the total amount of
claims payable by a company in a relatively short fixed period of time from a
portfolio or collection of policies. Restricting consideration to shorter periods
of time like a few months or a year often allows us to ignore aspects of the
changing value of money due to inflation. We shall consider two types of
models for S, the collective and the individual risk models.

In the collective risk model for S, we introduce the random variable N
which indicates the number of claims made, and write

S = X1 + · · ·+XN .

In this model, Xi is the random variable representing the amount arising
from the ith claim which is made in the time period being considered. Under
the collective risk model, S has what is called a compound distribution. In
some sense, we might say that the model is compounded by the fact that the
number of terms in the sum is random and not fixed.

77
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On the other hand, in the individual risk model for S, we let n be the number
of policies (in some cases, this may coincide with the number of policyholders)
in the portfolio under consideration and write

S = Y1 + · · ·+ Yn,

where Yi is the random variable representing the claim amount arising from
the ith policy (or policyholder). We refer to this as the individual risk model
for S since there is a term in the sum for each individual policy or policy-
holder. Since in a short period of time normally only a small proportion of
policies give rise to claims, most of the the terms Yi will be equal to 0. One of
the assumptions in the individual risk model is that at most one claim may
arise from a policy, while in the collective risk model multiple claims may
result from a single policy or policyholder. It is important to understand the
difference between the two models for the total claims S, and in particular
the difference in meaning for the claim size random variables Xi and Yi in
each case. Both of these models have appealing aspects for modeling, and
their appropriateness in any situation will depend on the assumptions one
can make. Although this chapter provides a good introduction to risk theory,
there are several other books which deal more extensively with the topic ([3],
[9], [19], [20] and [55]).

3.2 Collective risk models

In the collective risk model for claims, we model S as a compound distribu-
tion of the form S = X1 + · · · + XN . We assume that the component terms
X1, X2, . . . , are independent identically distributed random variables which
are also independent of the random number of terms N in the sum. Often N
is assumed to be Poisson, but other distributions such as the binomial or neg-
ative binomial can be used. When N is Poisson, S has a compound Poisson
distribution, and ifN is binomial or negative binomial then S has, respectively,
a compound binomial or compound negative binomial distribution.

Compound distributions are used to model many phenomena. For example,
we might model the total annual number of traffic fatalities F in a country
using a compound distribution where F = D1 + · · · +DN , N represents the
number of fatal traffic accidents in a year, and Di is the number of fatalities
in the ith fatal traffic accident. The total amount (centimeters) of rainfall
R = C1 + · · ·+CM in a particular location over a fixed period of time might
be modeled by a compound Poisson distribution where Ci is the amount
falling in the ith rainfall and M is the number of rainfalls. The daily amount
of employee working time W in a factory may be modeled by a compound
binomial distribution of the formW = H1+· · ·+HN whereHi is the number of
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hours worked by the ith arriving employee, n is the total number of employees
in total, and N ∼ B(n, q) is a binomial random variable denoting the number
who actually show up for work on the day.

3.2.1 Basic properties of compound distributions

We initially establish some basic distributional properties for compound dis-
tributions. The double expectation theorem (see appendix on Some Basic
Tools in Probability and Statistics) is useful in obtaining compact formulae
for the mean, variance and various generating functions of S. For example:

E(S) = EN (E(S | N))

=
∞∑

n=0

E(X1 + · · ·+Xn | N = n)P (N = n)

=
∞∑

n=0

[nE(X)]P (N = n)

= E(X)
∞∑

n=0

nP (N = n)

= E(X)E(N).

In a similar fashion, we obtain:

V ar(S) = V arN (E(S | N)) + EN (V (S | N))
= V arN (E(X) ·N) + EN (N · V ar(X))
= E2(X)V ar(N) + V ar(X)E(N),

and the moment generating function of S is given by:

MS(t) = E(etS) = EN [E(etS | N)]
= EN [E(et[X1+···+Xn]) | N = n)]
= EN (Mn

X(t) | N = n)
= EN (MN

X (t))
= EN (eN log MX(t))
= MN (logMX(t)).

In the special case when all claims are a constant X = K (and hence
V ar(X) = 0), one clearly has that E(S) = K E(N), V ar(S) = K2 V ar(N),
and MS(t) = MN (log etK) = MN (tK).

3.2.2 Compound Poisson, binomial and negative binomial
distributions

One of the main objectives in studying compound distribution models of the
form S = X1 + · · · + XN for aggregate claims is that they allow us to in-
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corporate attributes of both the severity of a typical claim (represented by
X) and the frequency (represented by N). We consider in some detail com-
pound Poisson, binomial and negative binomial distributions for S, however,
the compound Poisson is the most widely used of these. One reason is because
it is simpler than the others. It has just one rate parameter λ for the count
variable N , while the others have two ((n, q) for the binomial and (k, p) for
the negative binomial). Formulae for the basic moments of the compound
Poisson (mean, variance, skewness, ith central moment) are straightforward
as well as easily expressed in terms of λ and the moments of X. Furthermore,
it has the important property of being preserved under convolutions. This
is very useful in modeling combined risks over different companies or portfo-
lios within a company. For these reasons, we begin our study of compound
distributions with the compound Poisson.

3.2.2.1 Compound Poisson distribution

S is compound Poisson when N is Poisson with parameter λ. Since E(N) =
V ar(N) = λ and MN (t) = eλ [et−1], it follows that

E(S) = λE(X),
V ar(S) = λE(X2), and
MS(t) = MN (logMX(t)) = eλ[MX(t)−1].

These expressions are well worth remembering due to the popularity of the
compound Poisson distribution. Using the cumulant moment generating func-
tion CS(t) of a compound Poisson random variable S (which gives central
moments of a random variable), one may easily determine the skewness of S.
Since CS(t) = logMS(t) = λ[MX(t)− 1], the third central moment of S is

E(S − E(S))3 = C ′′′S (0) =
∂3

∂t3
{λ[MX(t)− 1]} |t=0

= λM ′′′
X (t) |t=0 = λm3,

and the ith central moment of S is given by

E(S − E(S))i = λmi = λE(Xi) for any i ≥ 2.

Example 3.1
Total claims in a portfolio of policies are modeled by a compound Poisson
distribution with parameter λ where the claim X size is lognormal (logX ∼
N(µ, σ2)). Using Y = logX, the moments of X are easily obtained since
mi = E(Xi) = E(eiY ) = eµi+(σ2i2)/2 for i = 1, . . . , . Therefore E(S) =
λm1 = λ eµ+ σ2

2 , V ar(S) = λm2 = λ e2µ+2σ2
, and the skewness of S is given

by

skew(S) =
λe3µ+ 9

2 σ2

(λe2µ+2σ2)3/2
=

1√
λ
e3σ2/2 → 0 as λ→∞.
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One may easily calculate the kurtosis of S to be

kurt (S) =
λe4µ+ 16

2 σ2

(λe2µ+2σ2)2
=
e4σ2

λ
.

Hence the kurtosis is very small if the expected number of claims λ is large
relative to the variance of logX, while it will be large when the expected
number of claims is relatively small. Note that both the skewness and kurtosis
of S are independent of the parameter µ = E(logX), but not of E(X) itself.

3.2.2.2 Compound binomial distribution

The compound binomial distribution S = X1 + · · · + XN , where N is bino-
mially distributed with parameters n and q, may be useful when there are n
policies, each of which might give rise to a claim in a given period of time with
probability q. Note the use of q (instead of the usual p) for the probability of
a claim – as the insurance company would certainly not regard a claim as a
success! The binomial distribution B(n, q) has moment generating function
MN (t) = (qet + p)n, therefore

MS(t) = MN (logMX(t)) = (qelog MX(t) + p)n = (qMX(t) + p)n.

Using mi = E(Xi) for i = 1, . . . , one may readily establish that

E(S) = E(N)E(X) = nqm1 (3.1)
V ar(S) = E(N)V ar(X) + V ar(N)E2(X)

= nq(m2 −m2
1) + nqpm2

1 = nq(m2 − qm2
1) (3.2)

CS(t) = logMS(t) = n log(qMX(t) + p). (3.3)

Finding the 3rd derivative of CS(t) with respect to t and evaluating at 0, one
has that C ′′′S (0) = nqm3−3nq2m2m1 +2nq3m3

1, which enables us to calculate
the skewness of S. The skewness of S approaches 0 as the parameter n→∞
since

skew(S) =
nqm3 − 3nq2m2m1 + 2nq3m3

1

(nqm2 − nq2m2
1)3/2

=
1√
n

qm3 − 3q2m2m1 + 2q3m3
1

(qm2 − q2m2
1)3/2

.

(3.4)
This is to be expected since for large n the central limit theorem applies (we
can view S as a sum of n independent identically distributed random variables
each of which is 0 with probability p = 1 − q), therefore S is approximately
normal and in particular symmetric. The skewness of a compound binomial
distribution may be negative. This is true when claims are constant (X = K)
and q > 1/2, since then

C ′′′S (0) = E[S − E(S)]3 = K3E(N − nq)3 < 0.
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Although this is theoretically possible, in most practical applications we en-
counter q is small and S is positively skewed.

Example 3.2
Consider a collection of 5000 policies each of which has probability q = 0.002
of giving rise to a claim in a given year. Assume all policies are for a fixed
amount X of K = 400. Then mi = (400)i for all i, and hence

E(S) = nqm1 = 5000(0.002)(400) = 4000,
V ar(S) = nq(m2 − qm2

1)
= 5000(0.002)[4002 − (0.002)(400)2]
= 1,596,800 and

skew(S) = [nqm3 − 3nq2m2m1 + 2nq3m3
1]/[nq(m2 − qm1)]3/2

= [5000(0.002)(400)3 − 3(5000)(0.002)2(400)2(400)
+2(5000)(0.002)3(400)3]/[1,596,800]3/2

= 636,165,120/[1,596,800]3/2

= 0.31527.

If there had been only 50 policies in this collection, then the mean, variance
and skewness would have been, respectively, E(S) = 40, V ar(S) = 15,968,
and skew (S) = 3.1527.

3.2.2.3 Compound negative binomial distribution

The compound negative binomial distribution S = X1 + · · · + XN where
N ∼ NB(k, p) may also be effectively used to model aggregate claims on
a collective-risk basis. Here N has the negative binomial distribution with
parameters k and p, where p is the probability of success in a sequence of
Bernoulli trials and N denotes the number of failures until the kth success.

If the parameter k = 1, then N ∼ NB(1, p) counts the number of failures
until the 1st success and has the geometric distribution with parameter p. It is
important to note that sometimes one defines the geometric random variable
with parameter p as the number N∗ of trials (as opposed to failures) until the
1st success. If N∗ represents the number of trials and N the number of failures
until the 1st success, then of course N∗ and N only differ by 1. Although they
have different means (E(N∗) = 1/p while E(N) = 1/p− 1 = q/p), they have
the same variance q/p2. In a similar fashion, one could define a negative
binomial random variable with parameters (k, p) to be the number of trials
until the kth success; however, here we shall continue to use the definition
which counts the number of failures until the kth success.

One interpretation of N is that it is the sum (convolution) of k geomet-
ric random variables with parameter p. This interpretation gives us some
motivation for considering the compound negative binomial distribution as a
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model for aggregate claims where there are k policies (or policyholders) in a
portfolio. We may, for instance, view the number of claims arising from the
ith policy (for i = 1, . . . , k) as being represented by the number of failures
between successes i− 1 and i in the sequence of Bernoulli trials. This allows
for the possibility that more than one claim may arise from a policy, which is
a restriction on the compound binomial distribution.

There are other reasons for considering the compound negative binomial
distribution as a model for aggregate claims. The negative binomial distri-
bution has two parameters while the Poisson has only one, hence it could
be considered to be more versatile in modeling claim frequency. One restric-
tion on the use of the Poisson random variable for claim frequency is that
the mean and variance are the same. If, for example, we feel the variabil-
ity in claims is greater than the expected number, then this may be incor-
porated through use of the negative binomial since if N ∼ NB(k, p), then
V ar(N) = kq/p2 > kq/p = E(N). Another reason to use the negative bino-
mial for modeling claim frequency is that the negative binomial distribution
may be interpreted as a gamma mixture of Poisson random variables.

We now determine basic formulae for the mean, variance and skewness of
the compound negative binomial distribution for S. The cumulant generating
function for S takes the form CS(t) = log(p/(1− qMX(t))k, and therefore

E(S) = C ′S(t) |t=0 =
kqM ′

X(t)
1− qMX(t)

|t=0 =
kq

p
m1 and (3.5)

V ar(S) = C ′′S(t) |t=0 =
kq[M ′′

X(t)(1− qMX(t) + q(M ′
X(t))2]

[1− qMX(t)]2
|t=0 (3.6)

=
kq(pm2 + qm2

1)
p2

. (3.7)

Now

C ′′′S (t) =kq ( [M ′′
X(t)(1− qMX(t)) + qM ′2

X (t)]′[1− qMX(t)]2 +
2[1− qMX(t)]qM ′

X(t)[M ′′
X(t)[1− qMX(t)] + qM ′2

X (t)])/(1− qMX(t))4,

and therefore

skew(S) =
C ′′′S (0)

[V ar(S)]3/2

=
kqm3/p+ 3kq2m1m2/p

2 + 2kq3m3
1/p

3

[k(pqm2 + q2m2
1)/p2]3/2

=
p2qm3 + 3pq2m1m2 + 2q3m3

1√
k (pq m2 + q2m2

1)3/2
.

Note in particular that the compound negative binomial distribution (unlike
the compound binomial) is always positively skewed. Moreover, as k → ∞
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(and S can be viewed as the sum of a large number of independent geometric
random variables), skew (S) → 0.

Example 3.3
Consider a compound negative binomial model for aggregate claims of the
form S1 = X1 + · · ·+XN1 where N1 ∼ NB(800, 0.98) and the typical claim X
is exponential with mean 400. A model of this type might be considered when
there are 800 policies and the number of claims arising from any particular
policy is geometric with mean 0.02/0.98 = 0.0204. The first three moments
of X are given by m1 = 400,m2 = 2(400)2 and m3 = 6(400)3. Therefore

E(S1) = kqm1/p = 800(0.02)(400)/(0.98)

= 6530.612,

V ar(S1) =
kq(pm2 + qm2

1)

p2
=

800(0.02) [(0.98)2(400)2 + (0.02)(400)2]

(0.98)2

= 5,277,801 = 2297.3462,

skew(S1) =
(0.98)2(0.02)6(400)3 + 3(0.98)(0.02)2400(2)(400)2 + 2(0.02)3(400)3√

800 [0.98(0.02)2(400)2 + (0.02)2(400)2]3/2

= (7,375,872 + 150,528 + 1024)/14,264,868

= 0.5277.

We might also wish to model aggregate claims in this situation using a
compound binomial distribution of the form S2 = X1 + · · · + XN2 where
N2 ∼ B(800, 0.02) and the typical claim X is exponential with mean 400.
Here our interpretation might be that in each of the 800 policies there will be
one claim with probability 0.02, and none with probability 0.98. In this case

E(S2) = nqm1 = 800(0.02)(400)

= 6400,

V ar(S2) = nq(m2 − qm2
1) = 800(0.02)[2(400)2 − (0.02)(400)2]

= 5,068,800 = 2251.4002 and

skew(S2) =
800 [(0.02)6(400)3 − 3(0.02)2(2(400)2)(400) + 2(0.02)3(400)3]

[800(0.02) (2(400)2 − 0.02(400)2 ]3/2

= 6,021,939,200/(2251.400)3

= 0.5277.

The compound negative binomial model has slightly greater mean and more
variability, although the two distributions have (to 4 decimal places) the same
skewness. Which is the most appropriate distribution to use? This is always
one of the challenges in modeling! One usually tries to pick a model that
incorporates the important factors of the situation, yet still can be interpreted
in a reasonable way.
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3.2.3 Sums of compound Poisson distributions

One of the most useful properties of the compound Poisson distribution is
that it is preserved under convolutions. Given that one often wants to bring
together claims from different portfolios or companies, this can be useful in
studying the distribution of the aggregate claims from different risks.

THEOREM 3.1
Assume that Si has a compound Poisson distribution with Poisson parameter
λi and claim (or component) distribution function Fi for i = 1, . . . , k. If the
random variables S1, . . . , Sk are independent, then the sum or convolution S =
S1+· · ·+Sk is also compound Poisson with Poisson parameter λ = λ1+· · ·+λk

and claim or component distribution function F =
∑k

i=1(λi/λ)Fi.

PROOF Let Mi(t) be the moment generating function corresponding to
Fi (the component distribution of Si) for i = 1, . . . , k. Using the expression
for the moment generating function of a compound Poisson distribution and
the independence of the Si, one obtains

MS(t) =
k∏

i=1

MSi
(t) = e

P
λi[Mi(t)−1] = eλ[

P
(λi/λ) Mi(t)−1],

which is the moment generating function of a compound Poisson distribution
with Poisson parameter λ =

∑
λi and component distribution function with

moment generating function given by
∑

(λi/λ)Mi(t). However, by the unique-
ness property of moment generating functions, this is the distribution of the
mixture of F1, . . . , Fk with the respective mixing constants λ1/λ, . . . , λk/λ.

Example 3.4
Let S1 = U1 + · · · + UN1 , S2 = V1 + · · · + VN2 and S3 = W1 + · · · + WN3

be three independent compound Poisson distributions representing claims in
three companies C1, C2 and C3. The Poisson parameters for N1, N2 and N3

are, respectively, 4, 2 and 6, and the probability distributions for typical claims
U , V and W in the three respective companies are given in Table 3.1.

By Theorem 3.1, S is compound Poisson with Poisson parameter given by
λ = 4 + 2 + 6 = 12, and the typical component X is a mixture distribution
of U , V and W with respective mixing weights given by (1/3, 1/6, 1/2). For
example

P (X = 200) =
1
3
(0.5) +

1
6
(0) +

1
2
(0.2) =

16
60
,

and the rest of the distribution is given in Table 3.1. Hence E(S) = λE(X) =
12(336.67) = 4040, and V ar(S) = λE(X2) = 12(126,000) = 1,512,000.
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TABLE 3.1

Probability distributions for U, V,W and X.
x P (U = x) P (V = x) P (W = x) P (X = x)

200 0.5 0 0.2 16/60
300 0.3 0.3 0.3 18/60
400 0.2 0.4 0.3 17/60
500 0 0.3 0.1 6/60
600 0 0 0.1 3/60

Letting N = N1 +N2 +N3, one finds, for example, that

P (S ≤ 400) = P (N = 0) + P (X ≤ 400)P (N = 1) + P 2(X = 200)P (N = 2)
= e−12{1 + (51/60)(12) + (16/60)2(122/2)}
= 0.0001.

Example 3.5
Claims in a company are grouped into two portfolios and modeled by com-
pound Poisson distributions. Those in portfolio 1 are modeled by a com-
pound Poisson distribution with rate parameter λ1 = 3/month and where
claims are exponentially distributed with mean 500. The rate parameter for
those in portfolio 2 is λ2 = 7/month, and claims are exponentially distributed
with mean 300. By Theorem 3.1, total annual claims S in the two portfo-
lios are modeled by a compound Poisson distribution with rate parameter
λ = 12(3 + 7) = 120 claims per year and component or claim distribution
X which is a 30% : 70% mixture of exponential distributions with means 500
and 300, respectively. In particular

E(S) = λE(X) = 120[(0.3)500 + (0.7)300]
= 432,000

V ar(S) = λE(X2) = 120[(0.3)2(500)2 + (0.7)2(300)2]
= 33,120,000 and

skew (S) = 120[(0.3)6(500)3 + (0.7)6(300)3]/(33,120,000)3/2

= 0.2130.

The moment generating function of S is given by MS(t) = e120[MX(t)−1] where

MX(t) = 0.3
1

1− 500t
+ 0.7

1
1− 300t

.

It is worth noting that in some cases convolutions of compound binomial
(negative binomial) distributions are also compound binomial (negative bino-
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mial). For example, suppose that S1, . . . , Sr are independent and compound
binomial (negative binomial) distributed with common claim size random vari-
able X, and where for some common value of q (common value of p) the ran-
dom number of claims in Si is Ni ∼ B(ni, q) (respectively, Ni ∼ NB(ki, p)).
Then S has compound binomial (negative binomial) distribution with typical
claim distribution X where the number of claims N ∼ B(n1 + · · · + nr, q)
(N ∼ NB(k1 + · · ·+ kr, p)).

3.2.4 Exact expressions for the distribution of S

If the number of claims N in the collective risk model S = X1 + · · ·+XN has
either a Poisson, binomial or negative binomial distribution, and the claim
random variable X takes positive integer values, then we may establish an
exact recursive expression for P (S = r) in terms of the probabilities P (S = j)
for j = 0, 1, . . . , r − 1 and the distribution of X. This expression is often
referred to as Panjer’s recursion formula (see [20], [47] and [48]), and it can
be of considerable practical use because it may be easily implemented with
basic computer programming.

Let us assume N is a random variable with the recursive property that for
some constants α and β,

P (N = n) = (α+ β/n) P (N = n− 1) (3.8)

holds for n = 1, . . . , max(N). The Poisson, binomial and negative binomial
distributions satisfy this property (and, in fact, are the only nonnegative
random variables which do). When N ∼ Poisson(λ), using α = 0 and β = λ,
one has that

P (N = n) =
λne−λ

n!
= (0 + λ/n) P (N = n− 1),

while when N ∼ B(m, q = 1 − p) (and using α = −q/(1 − q) and β =
(m+ 1)q/(1− q) ) it follows that

P (N = n) =
(
m

n

)
qn(1− q)m−n

=
m− n+ 1

n

q

1− q

(
m

n− 1

)
qn−1(1− q)m−(n−1)

=
[
−q

1− q
+

(m+ 1)q/(1− q)
n

]
P (N = n− 1) (3.9)

for n = 1, . . . ,m.
We use Sn to denote the probability distribution of X1 + · · · + Xn (in

particular then Sn = S[N=n] ), fX to denote the density function of the claim
random variable X which takes only positive integer values, and fSn

and fS

to be the density functions of Sn and S, respectively. Then the following
recursive formula for fS results:



88 RISK THEORY

THEOREM 3.2
For the collective risk model S = X1 + · · · + XN where N has the recursive
property (3.8) and X takes positive integer values, one has that fS(0) = fN (0)
and

fS(r) =
r∑

j=1

(α+
βj

r
) fX(j) fS(r − j) for r = 1, 2, . . . . (3.10)

PROOF The key is to consider two different but equivalent expressions
for the conditional probability E(X1 | Sn+1 = r), and to use the fact that∑r

1 fX(j)fSn
(r − j) = fSn+1(r) for any n ≥ 0 and r ≥ 1.

The terms in S are independent and identically distributed random vari-
ables. Hence given that the sum of n+1 of them is equal to r, the conditional
expected value of each of them must be the same, or in other words that
E(X1 | Sn+1 = r) = r/(n+ 1). On the other hand, this can also be expressed
using the standard definition of the conditional expectation of X1, given that
Sn+1 = r (that is, by summing over the values of X1 multiplied by the ap-
propriate conditional probabilities). Therefore by setting the two expressions
equal to one another, one obtains∑r

j=1 jfX(j)fSn(r − j)
fSn+1(r)

= E(X1 | Sn+1 = r) = r/(n+ 1). (3.11)

Therefore for any integer r = 1, 2, . . . , it follows that
r∑

j=1

(α+
βj

r
)fX(j)fS(r − j) =

r∑
j=1

(α+
β j

r
) fX(j) [

∞∑
n=0

fSn(r − j) P (N = n)]

=
∞∑

n=0

αP (N = n)
r∑

j=1

fX(j) fSn
(r − j)

+
∞∑

n=0

βP (N = n)
r∑

j=1

j

r
fX(j) fSn

(r − j)

=
∞∑

n=0

αP (N = n)fSn+1(r) + βP (N = n)
fSn+1(r)
n+ 1

(using (3.11) )

=
∞∑

n=0

[α + β/(n+ 1)]P (N = n) fSn+1(r)

=
∞∑

n=0

P (N = n+ 1) fSn+1(r) (using (3.8) )

= fS(r).
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Example 3.6
The total amount of claims S for a general insurance portfolio over a fixed
period of time is being modeled by a compound Poisson distribution where

S = X1 + · · ·+XN ,

X is uniformly distributed on {100, 200, 300, 400, 500, 600, 700, 800, 900}
and N has Poisson parameter λ. Since S is compound Poisson, it follows
that

E(S) = λE(X) = λ (100) (1 + · · ·+ 9)/9 = 500λ, and

V ar(S) = λE(X2) = λ (1002)

[
9∑

i=1

i2/9

]
= (2,850,000) (λ/9)

= 316,666.7 λ.

We determine the cumulant moment generating function of S in order to
calculate its skewness. Now

CS(t) = logMS(t) = λ[MX(t)− 1] = λ

[
9∑

i=1

e100i t/9− 1

]
.

Taking subsequent derivatives of CS(t), we find

C ′S(t) = (λ/9)(100)
9∑

i=1

i e100i t,

C ′′S(t) = (λ/9)(100)2
9∑

i=1

i2 e100i t and

C ′′′S (t) = (λ/9)(100)3
9∑

i=1

i3 e100i t.

Therefore E(S−E(S))3 = (λ/9)(100)3 [
∑9

i=1 i
3] = (λ/9)(20.25) 108 and hence

skew(S) = (λ/9)(20.25) 108/[V ar(S)]3/2 = 1.2626/
√
λ.

Note that the skewness of S converges to 0 as λ→∞.
Consider the specific case where λ = 3. Then E(S)=1500, V ar(S) = 974.68

and skew (S) = 0.7290, indicating that S is positively skewed. Is it appropri-
ate to assume S is approximately normal, i.e., is S ∼̇N(1500, 974.682)? One
way to answer this is to calculate the exact distribution for S and then to
compare it to that of a normal distribution.

Working in units of 100, we let S? = S/100 and X? = X/100. Since the
probability distribution of X? is uniform on the set {1, 2, . . . , 9}, the recursion
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formula (3.10) reduces to

P (S? = r) =
min(r,9)∑

j=1

λj

r
fX∗(j) P (S? = r − j)

=
3
9r

min(r,9)∑
j=1

j P (S? = r − j)

for r ≥ 1. Given that λ = 3, we have

P (S? = 0) = P (S = 0) = e−3 = 0.049787 and hence
P (S? = 1) = (1/3) 1P (S? = 0) = 0.016596,
P (S? = 2) = (1/6) [1P (S? = 1) + 2P (S? = 0)] = 0.019362,
P (S? = 3) = (1/9) [1P (S? = 2) + 2P (S? = 1) + 3P (S? = 0)] = 0.022435,
P (S? = 4) = (1/12) [1P (S? = 3) + 2P (S? = 2) + 3P (S? = 1) + 4P (S? = 0)]

= 0.025841.

Such calculations are easily implemented (in, for example, Excel or R), and one
may readily establish Table 3.2 for the probability distribution of S? (where
we have rounded off probabilities to 4 decimals). Figure 3.1 gives a histogram
of its distribution. Note the modest positive skewness for S∗ and the spiked
nature of the left tail due to the effect of the probability that N = 0.

Of course, Table 3.2 also gives us a distribution table for S. For example,
the probability that S falls within 1 standard deviation of its mean 1500 is

P (525 ≤ S ≤ 2475) = P (5.25 ≤ S? ≤ 24.75) = 0.6280.

Similarly, the probability that S is within 2 standard deviation units of 1500 is
0.9613. These are very close to the corresponding values of 0.6826 and 0.9544
for the normal distribution N(1500, 974.682).

Example 3.7
Assume S = X1 + · · · + XN has a compound binomial distribution where
N ∼ B(50, 0.04) and the typical claim random variable X (in units of 10,000)
has distribution as given in Table 3.3.

Working in units of 10,000, one may verify (using (3.1), (3.2) and (3.4) ),
that E(S) = 6.2, V ar(S) = 37.8312 = (6.1507)2, and skew (S) = 1.3633.
Letting α = −0.04167 and β = 2.125, we have according to Equations (3.10)
and (3.9) that

fS(0) = (1− q)50 and

fS(r) =
r∑

j=1

(−0.04167 +
2.125j
r

) fX(j) fS(r − j) for r = 1, 2, . . . , 50,
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TABLE 3.2

Exact (compound Poisson) probability for S?.
r 0 1 2 3 4
P (S? = r) 0.0498 0.0166 0.0194 0.0224 0.0258
r 5 6 7 8 9
P (S? = r) 0.0296 0.0338 0.0383 0.0434 0.0489
r 10 11 12 13 14
P (S? = r) 0.0383 0.0394 0.0402 0.0406 0.0405
r 15 16 17 18 19
P (S? = r) 0.0400 0.0388 0.0371 0.0345 0.0311
r 20 21 22 23 24
P (S? = r) 0.0295 0.0277 0.0258 0.0238 0.0218
r 25 26 27 28 ≥ 29
P (S? = r) 0.0197 0.0177 0.0158 0.0141 0.1095

the results of which are given in Table 3.4.

From Figure 3.2 we can see that the distribution of S is bimodal. The
normal density function with mean E(S) = 6.2 and variance 6.152 is also
plotted, and it is clear that the normal approximation to aggregate claims S
is not particularly good. The normal approximation for the probability that
claims are greater than or equal to 100,000 (that is, S ≥ 10) is 0.2958, while
the actual value is 0.2877. These tail probabilities are good even though the
normal approximation to S is not.

TABLE 3.3

Distribution of claim size X in Example 3.7.
Claim amount C j = C/10,000 fX(j) = Prob[X = j]

10,000 1 0.40
20,000 2 0.35
50,000 5 0.10

100, 000 10 0.15

TABLE 3.4

Exact (compound binomial) distribution for S (in 0,000′s)
of Example 3.7.

r 0 1 2 3 4 5
fS(r) 0.1299 0.1082 0.1389 0.0891 0.0671 0.0626
r & 6 7 8 9 ≥ 10
fS(r) 0.0422 0.0373 0.0220 0.0150 0.2877
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FIGURE 3.1
Probability distribution for S? of Example 3.6.

3.2.5 Approximations for the distribution of S

The algorithm of the previous section is very useful for calculating the ex-
act distribution of S when the claim size distribution is discrete and known,
and N has either the Poisson, binomial or negative binomial distribution. In
some cases, use of this approach may involve a considerable number of cal-
culations, particularly when it is used as a simulation tool for investigating
various models. A quick approximation to the distribution of S can prove
very useful, and in many situations a normal approximation to the distribu-
tion of S may be used. As we have already seen this is usually justified in the
case of the compound Poisson (binomial or negative binomial) when λ (nq or
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FIGURE 3.2
Normal approximation to compound binomial distribution of Example 3.7.

kp) is reasonably large. On the other hand, the normal distribution can in
theory take negative values and is symmetric, while aggregate claims S are
always nonnegative and often positively skewed. One alternative to the nor-
mal approximation which does not have these deficiencies and is sometimes
utilized is the shifted or translated gamma distribution. We denote by Γ(α, δ)
the gamma distribution with mean α/δ, variance α/δ2, and skewness 2/

√
α.

The gamma family of distributions is very versatile. A random variable has
the shifted gamma distribution with parameters (α, δ, τ) if it is distributed as
τ + Γ(α, δ).

If we have approximate knowledge of the mean µ, variance σ2 and skewness
κ of S, then we may consider approximating the distribution of S with a
shifted gamma distribution τ + Γ(α, δ) where α, δ and τ are chosen to satisfy
µ = τ + α/δ, σ2 = α/δ2 and κ = 2/

√
α. Solving these three equations, one

obtains
α = 4/κ2, δ = 2/(σκ) and τ = µ− 2σ/κ. (3.12)
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Example 3.8

Consider a compound Poisson risk model S = X1 + · · · + XN where N has
Poisson parameter λ = 4 and the typical claimX has density function fX(x) =
x/5000 for 0 ≤ x ≤ 100. Then

E(S) = λm1 = 4(1003/15,000) = 266.6667
V ar(S) = λm2 = 4(5000) = 20,000 = (141.4214)2, and
skew(S) = λm3/[V ar(S)]3/2 = 4(400,000)/(141.4214)3 = 0.5657.

Using Equations (3.12), we find α = 12.5, δ = 0.025 and τ = −233.3333 as
estimates for the parameters of a shifted gamma distribution to approximate
S. The shifted gamma density function with these parameters as well as the
N(266.6667, (141.4214)2) density function are plotted in in Figure 3.3.

3.3 Individual risk models for S

In the individual risk model for total claims, we assume that there are n indi-
vidual risks. The claim amount arising from the jth risk is denoted by Yj for
j = 1, . . . , n, and we use S =

∑n
1 Yj to denote the aggregate or total amount

of claims in a given fixed period of time (say a year). In most applications
the majority of the Yj will be equal to 0, since only a small proportion of
the risks will give rise to claims. The so-called individual risks may be those
individuals insured by a company, or the individual policies in a company.
Normally, we assume the Yj are independent random variables, although they
are not necessarily identically distributed. It is important to remember that
Yj refers to the claim amount (which may be 0) of the jth individual, and not
to the jth claim which is made during the period of time being considered (in
the collective risk model where S = X1 + · · · + XN , Xj referred to the jth

claim made in time). We let Ij be the indicator random variable which is 1
if the jth risk gives rise to a nonzero claim (which happens with probability
qj), and otherwise is 0.

A basic assumption in the individual risk model is that an individual makes
at most one claim in the (often relatively short) time period being considered.
If in fact the jth risk gives rise to a claim, then the size of the claim will be
denoted by Xj and hence we write Yj = Xj · Ij . We let µj = E(Xj) and
σ2

j = V ar(Xj) for j = 1, . . . , n. Therefore we may express total claims S by

S = Y1 + Y2 + · · ·+ Yn = X1 · I1 +X2 · I2 + · · ·+Xn · In.
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FIGURE 3.3
Normal and shifted gamma approximations for the compound Poisson
distribution of Example 3.8.

3.3.1 Basic properties of the individual risk model

The following results give basic formulae for the mean and variance of S:

THEOREM 3.3
In the individual risk model for total claims where S =

∑n
1 Yj,

E(S) =
n∑
1

qjµj and (3.13)

V ar(S) =
n∑
1

{qjσ2
j + qj(1− qj)µ2

j}. (3.14)
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PROOF By the double expectation theorem, E(Yj) = EIj
(E(Yj | Ij))

where E(Yj | Ij) is the random variable taking the value µi when Ij = 1
and 0 otherwise. Table 3.5 gives the probability distribution of E(Yj | Ij).
Therefore E(Yj) = qj · µj + pj · 0 = qjµj , from which Equation (3.13) follows.
We may also determine V ar(Yj) by conditioning on Ij for any j, since

V ar(Yj) = E(V (Yj | Ij)) + V ar(E(Yj | Ij)).

V (Yj | Ij) is the random variable which is determined once we know Ij , and
whose distribution is also given in Table 3.5. Thus V ar(Yj) = σ2

j qj + µ2
jqjpj ,

and using the independence of the Yj , Equation (3.14) follows.

TABLE 3.5

Distributions for E(Yj | Ij) and V (Yj | Ij).
i P (Ij = i) E(Yj | Ij = i) V ar(Yj | Ij = i)
1 qj µj = E(Xj) σ2

j = V ar(Xj)
0 pj = 1− qj 0 0

Example 3.9
The employees in a hospital are offered (one-year) term life insurance on the
basis of summary data on their annual salaries. The employees may be divided
into the three categories of nurses, doctors and administrators. We assume
that salaries within a given category are normally distributed, with details
given in Table 3.6. If a premium of 850,000 is collected to handle this group
scheme for the coming year, what is the probability that the premium will
cover claims?

TABLE 3.6

Salary information on hospital employees of Example 3.9.
Category Number Mortality = qj Mean salary Salary sd
Nurse 400 0.02 25,000 2,000
Doctor 60 0.06 75,000 20,000
Administrator 80 0.04 30,000 5,000

Let S =
∑540

j=1 Yj be the random variable representing total annual claims
from this group, where Yj is the claim made (if any) by the jth individual.
Hence S = SN + SD + SA where SN =

∑400
1 Yj is the total claims from the

nurses, and similarly SD =
∑460

401 Yj and SA =
∑540

461 Yj are, respectively,
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those for doctors and administrators. In using the individual risk model for
S, we are assuming that deaths (and hence resulting claims) are independent
events. Hence we have that

E(S) = E(SN ) + E(SD) + E(SA)
= 400(0.02)(25,000) + 60(0.06)(75,000) + 80(0.04)(30,000)
= 566,000 and

V ar(S) = V ar(SN ) + V ar(SD) + V ar(SA) =
540∑
1

{qjσ2
j + qj(1− qj)µ2

j}

= 400 [ 0.02(2000)2 + 0.02(0.98)(25,000)2]
+60 [ 0.06(20,000)2 + 0.06(0.94)(75,000)2]
+80 [ 0.04(5000)2 + 0.04(0.96)(30,000)2]

= (168,082.7)2.

SN , SD and SA are by the central limit theorem approximately normal, and
since they are independent S ∼̇N(566,000, (168,082.7)2). Therefore the prob-
ability that the group premium will cover claims is

P [S < 850,000] .= P [N(0, 1) < (850,000− 566,000)/168,082.7]
= P [N(0, 1) < 1.6896] = 0.9545.

3.3.2 Compound binomial distributions and individual risk
models

The individual risk model is closely related to (and in some sense equivalent
to a generalization of) the compound binomial model. Let us consider a
homogeneous version of the individual risk model. In particular, assume there
exists a q > 0 and a claim random variable X such that for all j = 1, . . . , n
we have qj = q and Xj ∼ X. Furthermore, let I be the indicator random
variable where P (I = 1) = q, and Y = X · I. We use SI = Y1 + · · · + Yn to
denote total claims under the individual risk model. This is to be compared
with the compound binomial model SC = X1 + · · ·+XN , where N ∼ B(n, q).
Note that

E(SI) = (nq)µ = E(N)E(X) = E(SC)

and

V ar(SI) = n[qσ2 + q(1− q)µ2]
= nq[m2 −m2

1 + (1− q)m2
1] = nq[m2 − qm2

1]
= V ar(SC)

where we interchangeably use µ = E(X) = m1 and σ2 = V ar(X) = m2 −m2
1

to link the formulae used for the mean and variance of a compound binomial
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distribution and an individual risk model distribution. In fact, in this case
SI and SC not only have the same probability distribution, but take the
same value in any given realization. There is, however, a subtle difference
in their representation. In the individual risk model for SI , Yj refers to the
amount of claim (which may be 0) made by the jth individual (in a given list
of individuals j = 1, . . . , n), while in the compound binomial collective risk
model for SC , Xj refers to the amount of the jth claim which is made in order
of time (j = 1, . . . , N).

Another way of looking at an individual risk model is to consider it as the
sum of independent compound binomial distributions (where individuals with
equal claim probabilities qj and claim distributions Xj have been combined).

3.3.3 Compound Poisson approximations for individual risk
models

In the individual risk model where S = Y1+· · ·+Yn = X1 ·I1+· · ·+Xn ·In, one
would expect to observe about λ =

∑n
j=1 qj claims in total, and the claims

themselves would be a selection from the claim types of the individuals. This
might suggest comparing an individual risk model with a compound Poisson
(collective risk) model with Poisson parameter λ =

∑n
j=1 qj where the typical

claim random variable W is a mixture of the Xj .

Corresponding to each Yj in the individual risk model, we define Ỹj to be
the random variable having the compound Poisson distribution with Poisson
parameter λj = qj and where the component distribution is Xj . One advan-
tage this approach has over the individual risk model is that it incorporates
the possibility that an individual can make more than one claim. It follows
from Theorem 3.1 that S̃ =

∑n
j=1 Ỹj also has a compound Poisson distribution

with Poisson parameter λ =
∑n

j=1 λj and where the component distribution
W is the {λj/λ, j = 1, . . . , n} mixture of the {Xj , j = 1, . . . , n}.

We may view the collective risk model S̃ as a compound Poisson approx-
imation to the individual risk model S. Of course, they represent different
approaches to modeling the same thing (aggregate claims), and one may nat-
urally ask how do they differ in their mathematical properties? In fact as the
following shows, they have the same mean but the variance of S̃ is slightly
greater than that of S.

E(S̃) = λE(W ) = λ
n∑

j=1

λj

λ
E(Xj) =

n∑
j=1

λj E(Xj)

=
n∑

j=1

qj µj = E(S),

Highlight
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while

V ar(S̃) = λE(W 2) = λ
n∑

j=1

λj

λ
(σ2

j + µ2
j )

=
n∑

j=1

qj(σ2
j + µ2

j ) ≥
n∑

j=1

qjσ
2
j + qj(1− qj)µ2

j = V ar(S).

The added variability in the compound Poisson approximation S̃ to the indi-
vidual risk model S is essentially due to the possibility of allowing more than
one claim per individual. In most cases, however, this difference (V ar(S̃) −
V ar(S) =

∑n
j=1 q

2
jµ

2
j ) is very small.

3.4 Premiums and reserves for aggregate claims

Having analyzed a random risk S, an insurance company will want to decide
how much it should charge to handle (take responsibility for) the risk, and
whether or not it should set aside reserves in case of extreme or unlikely
events occurring. These problems have to be considered in the light of a very
competitive market for insurance.

3.4.1 Determining premiums for aggregate claims

Given a risk S, we refer to its expected value E(S) as the pure or office pre-
mium for the risk. Clearly, an insurance company must charge more than
the pure premium to cover expenses, allow for variability in the number and
amount of claims, and make a profit. When an allowance is made for security
or safety (due to the variability of S) in determining a premium for a risk, one
speaks of the net premium, and when one also takes into account administra-
tive costs, one obtains the gross premium. In most of our modeling, we will
make the (somewhat naive) assumption that administrative costs are nil, and
therefore concentrate on the pure and net premiums. In fact, administrative
costs are clearly important in practice, and changes in policy details (like the
introduction of a deductible) often influence both claim and administrative
costs.

In a simple model for determining premiums, assume that we use a loading
(safety or security) factor θ, whereby the net premium charged is of the form
(1 + θ)E(S). A large value of θ will give more security and profits, but also
could result in a decrease in the amount of business done (policies in force)
because of the competitive nature of the insurance business. This principle
for premium calculation is sometimes referred to as the expected value prin-
ciple, and we shall generally use this method in our modeling. In spite of its

峥 周
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common usage, this principle for premium calculation takes no account of the
variability in a risk, and in particular two risks with the same expected value
but widely differing variabilities would be assigned the same net premium us-
ing this method. After all, it is the variability in a risk which often motivates
an individual to buy insurance in the first place! Two methods that do take
into account the variability of the risk S are the standard deviation principle
(where premium calculation is based on E(S) + θ

√
V ar(S) ), and the vari-

ance principle (where it is based on E(S) + θ V ar(S) ). For an interesting
discussion of the principles of premium calculation, one may refer to [56].

Example 3.10

Fifteen hundred structures are insured against fire by a company. The amounts
insured ($000′s), as well as the chances of a claim, vary as indicated in
Table 3.7. We let qk be the chance of a claim for a structure in category
k, and assume the chance of more than one claim on any individual structure
is negligible.

TABLE 3.7

Fire insurance on 1500 structures.
Category k Amount insured (000′s) qk No. Structures

1 20 0.04 500
2 30 0.04 300
3 50 0.02 500
4 100 0.02 200

Assume fires occur independently of one another, and that for a structure
insured for $A the amount of a claim X (conditional on there being a claim) is
uniformly distributed on [0, A] (we write X ∼ U [0, A]). Let N be the number
of claims made in a year and S the amount (in units of $1000). Using an
individual risk model for S, we determine the mean and variance of N and
S. If we wish to use a security loading of 2θ for structures in categories 1 and
2, and θ otherwise, we find the value of θ which gives us a 99% probability
that premiums exceed claims. We also find what the corresponding value of
θ would be if the number of structures in categories 1 and 2 were doubled.

We may write N =
∑
Ij as the sum of 1500 independent Bernoulli random

variables, and hence

E(N) = 500(0.04) + 300(0.04) + 500(0.02) + 200(0.02) = 46 and
V ar(N) = 500(0.04)(0.96) + 300(0.04)(0.96)

+ 500(0.02)(0.98) + 200(0.02)(0.98)
= 44.44.
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As X is uniformly distributed on the interval [0, A], E(X) = A/2 and
V ar(X) = A2/12. We work in units of 1000, and write S = S1 +S2 +S3 +S4

where Si represents claims from structures of type i. Now

E(S1) = 500(0.04)(10) = 200 and
V ar(S1) = 500 [0.04(202)/12 + 0.04(0.96)102] = 2586.667.

Similar calculations for i = 2, 3 and 4 yield:

E(S) = E(S1) + E(S2) + E(S3) + E(S4)
= 200 + 180 + 250 + 200 = 830 and

V ar(S) = V ar(S1) + V ar(S2) + V ar(S3) + V ar(S4)
= 2586.667 + 3492 + 8208.333 + 13, 133.333
= 27,420.333 = (165.5909)2.

Premium income PI will amount to

PI = (1 + 2θ)[E(S1) + E(S2)] + (1 + θ)[E(S3) + E(S4)]
= (1 + 2θ) 380 + (1 + θ) 450 = 1210 θ + E(S),

and we want θ such that

0.99 = P (S < 1210 · θ + E(S))
.= P (N(0, 1) < 1210 · θ/165.5909 ).

Therefore θ = z0.99 (165.5909/1210) = 0.3184.
Suppose now that the numbers of structures in categories 1 and 2 were to

be doubled. Let S∗ represent the claims which result, and use θ∗ to denote
the new security factor. Then clearly, E(S∗) = 2[E(S1) + E(S2)] + E(S3) +
E(S4) = 1210, new premiums P ∗I are

P ∗I = (1 + 2θ∗)(2)(E(S1) + E(S2)) + (1 + θ∗)(E(S3) + E(S4))
= 4θ∗(380) + θ∗(450) + E(S∗)
= 1970 θ∗ + E(S∗) and

V ar(S∗) = V ar(S1) + V ar(S2) + V ar(S)
= 2586.667 + 3492 + 27,420.333
= 33,499 = (183.0273)2.

Therefore proceeding as with S and using a normal approximation, it follows
that θ∗ = z0.99 (183.0273/1970) = 0.2161.

Generally speaking, the security factor will decrease when the volume of
business increases if the relative frequency and severity (or type) of claims
remains the same. In this example, we considered doubling the amount of
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business in some but not all of the categories of business. In general, if business
across the board increases by a factor of k, then (assuming other aspects
remain the same, including the degree of confidence required for premiums to
cover claims) the necessary security factor decreases by a factor of 1/

√
k (see

Problem 9 ).

Example 3.11

Insurance for accidents is provided to all employees in a large factory. The
employees have been categorized into three types by virtue of their work.
It can be assumed that claims of individuals are independent. The claim
incidence rate is given for each type in Table 3.8, together with the number of
employees of each type and the corresponding claim size distribution Bk (k =
1, 2, 3).

TABLE 3.8

Accident insurance for employees in a large factory.
Class type k Number Claim probability qk Bk

1 2000 0.01 Pareto (β = 3, δ = 800)
2 2000 0.02 exponential (µ = 500)
3 1000 0.01 U [320, 680]

Using an individual risk model, we determine the security factor θ which
should be used in setting premium levels in order to ensure that the probability
claims exceed premiums is 0.02. We also determine what it would be if one
were to approximate this individual risk model with a compound Poisson
model, and comment on the relationship between the two security factors.

From basic properties of the Pareto, exponential and uniform distributions,
one may determine Table 3.9.

TABLE 3.9

Summary statistics for accident claims by class type.
Class type k Number Mean µk Variance σ2

k m2 = E(X2
k)

1 2000 400 480,000 640,000
2 2000 500 250,000 500,000
3 1000 500 10,800 260,800

We use SI to model aggregate claims with an individual risk model and SC

to be the corresponding compound Poisson approximation. SC has compound
Poisson parameter λ = 2000(0.01) + 2000(0.02) + 1000(0.01) = 70, with the
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typical claim W being the mixture

W =

Pareto (3, 800) with probability 2/7
exponential (µ = 500) with probability 4/7
U [320, 680] with probability 1/7.

Therefore E(SI) = E(SC) where

E(SI) = 2000(400)(0.01) + 2000(500)(0.02) + 1000(500)(0.01) = 33,000.

For the individual risk model we have

V ar(SI) = 2000[(400)2(0.01)(0.99) + (0.01)480,000]
+2000[(500)2(0.02)(0.98) + (0.02)250,000]
+1000[(500)2(0.01)(0.99) + (0.01)10,800]

= 12,768,000 + 19,800,000 + 2,583,000
= 35,151,000 = (5928.828)2,

while for the compound Poisson approximation

V ar(SC) = 70E(W 2)

= 70 [
2
7

(640,000) +
4
7

(500,000) +
1
7

(260,800)]

= 35,408,000 = (5950.462)2.

The standard deviation of SC is only marginally bigger than that of SI . If
one wanted to put a security loading on premiums in order to be 98% sure that
premiums exceed claims, then using the individual risk model to determine
this loading one would obtain θI = (2.0537)(5928.828)/33,000 = 0.3690, while
for the compound Poisson approximation it would be the marginally larger
θC = (2.0537)(5950.462)/33,000 = 0.3703.

3.4.2 Setting aside reserves for aggregate claims

Normally, a certain amount of reserves U must be set aside to cover situations
when large numbers and/or aggregate amounts of claims occur. There should
be enough reserves to ensure with high probability that premiums plus reserves
should exceed claims. On the other hand, putting too much into reserves can
be both costly and wasteful.

In a large portfolio of policies, the central limit theorem can be very useful
in helping us to determine the appropriate amount of reserves for a given
situation. In the collective risk model where S = X1 + · · · + XN , we may
often well approximate the distribution of S by a normal distribution if N
is reasonably large. This is basically guaranteed by a generalization of the
central limit theorem. For example, in a compound Poisson distribution, if



104 RISK THEORY

λ is large then we expect a large number of terms in the sum for S and we
have already seen that the skewness of S is inversely proportional to

√
λ. For

the compound binomial distribution, we have seen that if n is large where
N ∼ B(n, q), then we may also interpret S as the sum of a large number of
independent and identically distributed random variables and hence use the
central limit theorem directly.

Suppose that total annual claims are being modeled by a compound Poisson
distribution with Poisson parameter λ and random claim size X. If we want
to determine the amount of reserves U which should be held in order to be
100(1 − ε)% sure that premiums plus reserves cover claims, then (using a
normal approximation for S)

1− ε = P ( S < U + (1 + θ)E(S) )

= P ( [S − E(S)]/
√
V ar(S) < [U + θE(S) ]/

√
V ar(S) )

.= P ( N(0, 1) < [U + θλE(X)]/
√
V ar(S) ). (3.15)

Hence we want z1−ε = [U + θλE(X)]/
√
λE(X2), or

U = z1−ε

√
λE(X2)− θλE(X). (3.16)

Equation (3.16) establishes an important relationship between necessary re-
serves U , degree of confidence 1 − ε, claim rate λ, security or loading factor
θ, and type of claim X.

Example 3.12
Suppose that claims in company A can be modeled by a compound Poisson
distribution where the typical claim is Γ(2, 0.02) distributed and about 200
claims are expected annually. If a loading factor of θ = 0.02 is to be used
on premiums, then in order to be 98% sure that premiums plus reserves UA

exceed annual claims, one should set aside reserves of

UA = 2.0537
√

200E(X2)− 0.02(200)E(X)

= 2.0537
√

200 [(2/0.02)2 + 2/(0.02)2]− 4(100)
= 3157.11.

When ε, θ and the claim distribution are fixed, one can see from Equation
(3.16) that U is a quadratic function of

√
λ. Initially, as λ increases, so do

the necessary reserves U . However, there exists a unique positive solution λ0

to 0 = z1−ε

√
λE(X2)− θλE(X), and for any λ > λ0 no reserves are actually

needed to be 100(1 − ε)% sure premiums exceed claims. This demonstrates
one of the advantages that big companies (holding large numbers of policies
and hence with a corresponding large λ) have over smaller ones. Figure 3.4
gives a plot of UA as a function of the expected number of annual claims λ for
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FIGURE 3.4
Necessary reserves for company A in Example 3.12.

company A. Note that if in fact λA were as large as 15,816, then no reserves
would be needed to meet claims (with 98% confidence).

Assume now that company A is considering merging with company B.
Company B has a portfolio of policies where annual aggregate claims are
modeled by a compound Poisson distribution with rate parameter λB =
100/year, the security loading is θB = 0.03, and claim size is modeled by
XB ∼ Γ(2, 0.01). On its own, company B would need reserves of

UB = 2.0537
√

100 [ (2/0.01)2 + 2/(0.01)2]− 3(200)
= 4430.52

to be 98% confident that reserves plus premiums meet claims for a year.
Another advantage that big business has (in this case the bigger business
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resulting from merging) is that both risks and resources (reserves) can be
pooled.

If companies A and B merge, then we can model total claims S = SA +SB

from policyholders in both companies with a compound Poisson distribution
where the expected number of claims in a year is λ = λA + λB = 300 and a
typical claim X is a (2/3, 1/3) mixture of XA and XB . Another interpretation
of X is that 2/3 of the time the claim will come from a person formerly holding
a policy with company A and otherwise with company B. Proceeding as in
the derivation of (3.16), one may establish that the amount of reserves UA+B

necessary to be 100(1 − ε)% sure that all claims are met by premiums plus
reserves is given by

UA+B = z1−ε

√
λAE(X2

A) + λBE(X2
B)−[θAλAE(XA)+θBλBE(XB)]. (3.17)

Therefore if companies A and B merge, the amount of reserves necessary to
be 98% sure that together with premiums all claims will be met is

UA+B = 2.0537
√

200(15,000) + 100(60,000)− [0.02(200)100 + 0.03(100)200]
= 5161.1.

Note then that when the companies merge, the necessary reserves are consid-
erably less than the sum of the reserves 3157.11 + 4430.52 = 7587.63 needed
separately. In one of the problems you are asked to show that if both λA and
λB were 10 times larger, then UA+B = 9483.11 < UB = 9907.89.

Example 3.13
A company has n personal health policies where the probability of a claim
is assumed to be q in each case. Let X represent a typical claim and S =
X1 + · · · + XN be the total amount of claims in one year as modeled by a
compound binomial distribution. If θ is the loading factor for premiums and
U is the necessary initial reserves to be 99% sure that all claims will be paid
in the coming year, then

U =̇ 2.3263
√
nq(m2 − qm2

1)− θnqm1.

Assume now that three companies A, B and C are to merge, and that
each have annual claim structures as indicated below for portfolios of personal
health policies and total claims SA, SB and SC , respectively. What combined
reserves are necessary to be 99% sure all claims will be met?

Company A Company B Company C
Claim size X Γ(2, 0.02) Γ(2, 0.01) Γ(1, 0.01)
n number of policies 500 1000 2000
q probability of claim 0.02 0.04 0.01
θ security loading 0.20 0.10 0.10
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Using a compound binomial distribution to model total claims S we have
that E(S) = nqm1 and V ar(S) = nq (m2 − m2

1) + nqpm2
1 from Equations

(3.1) and (3.2). By appealing to the central limit theorem (reasonable when
nq is relatively large) and using an argument similar to that used to establish
(3.15), one obtains that U =̇ 2.3263

√
nq(m2 − qm2

1)− θnqm1. Similar to the
compound Poisson situation (where U initially increases and then decreases
as a function of λ), it is clear that U initially increases and then decreases as
a function of n.

We model total claims for the three companies as the sum S = SA +
SB + SC of compound binomial distributions. Approximating S by a normal
distribution, it follows that the necessary reserves U = UA+B+C satisfy

U = 2.3263
√
V ar(SA) + V ar(SB) + V ar(SC)

−[ θAE(SA) + θBE(SB) + θCE(SC) ]
= 232.63(100)√

5(.02)[150− .02(1)] + 10(.04)[600− .04(2)] + 20(.01)[200− .01(1)]
−(0.2(500)(0.02)100 + 0.1(1000)(0.04)200 + 0.1(2000)(0.01)100)

= 2.3263(1717.452)− 1200
= 2795.31.

3.5 Reinsurance for aggregate claims

In Chapter 2 on loss distributions, we introduced various types of claim-by-
claim reinsurance, while here we will discuss types of reinsurance for the
aggregate amount of claims S. Many such arrangements are based on indi-
vidual claims. In a claim-by-claim based reinsurance agreement on S, each
individual claim X is split into two components

X = Y + Z = hI(X) + hR(X),

which are, respectively, handled by the insurance (Y = hI(X)) and rein-
surance (Z = hR(X)) companies. There are, of course, many possibilities of
nonnegative functions hI and hR with the property that X = hI(X)+hR(X).
In proportional reinsurance, hI(X) = αX and hR(X) = (1 − α)X for some
0 ≤ α ≤ 1, while for excess of loss reinsurance we have hI(X) = min(X,M)
and hR(X) = max(0, X −M) for some claim excess level M .

If S denotes total claims for a portfolio of policies in a collective risk model,
then in claim-by-claim based reinsurance we express the amounts paid by the
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insurer and reinsurer as SI and SR, respectively, where

S =
N∑
1

Xi =
N∑
1

Yi +
N∑
1

Zi

=
N∑
1

hI(Xi) +
N∑
1

hR(Xi)

= SI + SR.

Note that in the collective risk model where S = X1 + · · ·+XN , each of the
claims Xi is positive. However, for some forms of reinsurance, it is clearly
possible that one of Yi or Zi in the decomposition Xi = Yi +Zi is actually 0.
For example, in excess of loss reinsurance with retention or excess level M ,
if Xi < M then the reinsurer will not be involved with the claim and hence
Zi = 0.

In stop-loss reinsurance for S, the reinsurance company handles the excess
of the aggregate claims S over an agreed amount M with the baseline company
taking responsibility for the remainder (the total amount up to this agreed
cut-off or stop-loss value). The term stop-loss refers to the fact that the loss
of the insurance company in this case is stopped or limited to M . In stop-loss
reinsurance, we write S = min(S,M) +max(0, S −M) = SI + SR for some
stop-loss level M .

Reinsurance companies will charge for sharing in the risk of an insurance
company, and this could affect both the level and type of agreement that an
insurance company may make with a reinsurer. We will continue to use θ
to represent the security loading used by a baseline insurance company in
determining premiums for its policy holders, and will use ξ to represent the
corresponding loading which the reinsurer uses to cover its risk SR. Hence net
premium income over a fixed time period for the insurance company takes the
form (1 + θ)E(S)− (1 + ξ)E(SR). Normally, the reinsurer will use a heavier
loading (ξ > θ), and hence the cedant must balance the advantage of sharing
the risk with the reinsurer vis-a-vis the cost involved. The net premiums
will be used to pay claims, and hence in particular should normally exceed
the expected amount of claims payable. We will use P$ in this setting to
represent the profit or net premiums minus claims, and hence expected profit
for the insurer takes the form

E(P$) = (1 + θ)E(S)− (1 + ξ)E(SR)− E(SI)
= θE(SI)− (ξ − θ)E(SR). (3.18)

This is clearly nonnegative if and only if

E(SI)/E(SR) ≥ (ξ − θ)/θ = ξ/θ − 1. (3.19)

In many situations, one may need to hold sufficient reserves U to cope with
situations where claims exceed net premiums.
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In this section, we shall investigate in some detail aspects of proportional,
excess of loss and stop-loss reinsurance agreements. We will gain some insight
into how these arrangements affect reserve requirements, the profitability and
the security of an insurance company when using collective risk models for
aggregate claims. In general, we will see that if the objective of an insurance
company is to maximize expected profits, then reinsurance would rarely be
used because it is relatively expensive. On the other hand, security and sol-
vency are of crucial importance, and here the role of the reinsurer is vital.
We will address this issue further in the chapter on ruin theory where we
consider the probability of ruin as a criterion in evaluating types and levels
of reinsurance.

3.5.1 Proportional reinsurance

In proportional reinsurance, an agreed proportion α (0 ≤ α ≤ 1) of each claim
is retained by the baseline insurance company, and the remaining proportion
(1 − α) is ceded to the reinsurer. Hence total aggregate claims S can be
represented as

S = SI + SR = αS + (1− α)S.

SI and SR are perfectly correlated since cov(SI , SR) = α(1 − α) cov(S, S) =
α(1− α)V ar(S), from which it follows that corr(SI , SR) = 1. Note that

V ar(SI) + V ar(SR) = [α2 + (1− α)2] V ar(S) < V ar(S),

and hence the sum of the variances of the shared risks has been reduced
by proportionally sharing S. This may be considered advantageous to both
parties! Since skewness and kurtosis are scale-invariant descriptive measures
of a random variable, they remain the same for both the insurer and reinsurer.

If S is compound Poisson with Poisson parameter λ and typical claim X,
then clearly SI (SR) is compound Poisson with Poisson parameter λ and typ-
ical claim αX ( (1− α)X ). Similar statements can be made for the situation
when S is compound binomial or compound negative binomial.

Example 3.14
Suppose we are modeling collective risks S = X1 + · · ·+XN with a compound
binomial distribution where N ∼ B(800, q = 0.025) and the typical claim
X has gamma distribution Γ(2, 0.04). We have agreed on a proportional
reinsurance agreement where the baseline insurance company retains 60% of
any claim. Now m1 = E(X) = 2/0.04 = 50, and similarly one obtains
m2 = E(X2) = V ar(X) + E2(X) = 3750 and m3 = E(X3) = 375,000. Using
Equations (3.1), (3.2) and (3.4) we obtain

E(SI) = αnqm1 = (0.60)(800)(0.025)(2/0.04)
= 600
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V ar(SI) = α2 nq(m2 − qm2
1)

= (0.60)2 (800)(0.025)(3750− (0.025)502)
= 26,550 and

skew(SI) = skew(S)

=
nqm3 − 3nq2m2m1 + 2nq3m3

1

(V ar(SI))3/2

=
20(375,000)− 3(20)(0.025)(3750)50 + 2(20)(0.025)2(503)

(26,550)3/2

= 1.6694.

If the baseline insurance company retains a proportion α of each claim, then
its net premium income will be of the form (1+ θ)E(S)− (1+ ξ)(1−α)E(S).
Net premium income will therefore be positive if and only if α > (ξ−θ)/(1+ξ).
On the other hand, the expected profit (3.18) is of the form

E(P$) = (1 + θ)E(S)− (1 + ξ)(1− α)E(S)− αE(S) = [θ − ξ(1− α)]E(S),

which from (3.19) is nonnegative if and only if α/(1 − α) ≥ (ξ − θ)/θ or
equivalently α ≥ 1 − θ/ξ. Since 1 − θ/ξ ≥ (ξ − θ)/(1 + ξ), the insurance
company should retain at least 100(1− θ/ξ)% of the business (that is, ensure
α ≥ 1− θ/ξ). In the unlikely but theoretically possible situation where θ ≥ ξ,
there is no such restriction on α, and in this case reinsurance is so cheap that
the insurance company might consider passing on all of the business (i.e., use
α = 0).

Note that the expected profit is an increasing function of the retention
proportion α, hence if the objective is to maximize expected profits the insurer
would select α = 1 and not use the option of reinsurance. However, as we
know in (insurance) business one usually desires to achieve a balance between
security and maximizing expected profits. We will consider this issue more
extensively in Chapter 4 on ruin theory.

Example 3.15

Total claims in company A for a period of one year can be modeled by a com-
pound Poisson distribution. Individual claim sizes are exponential in nature
with mean 100, and a security loading of θ = 0.1 is used in determining pre-
miums. One would expect 18 claims to be made during the year. We assume
that $1000 is available for claims reserving.

1. Claim-by-claim proportional reinsurance is available at a cost of $1.2 =
(1 + ξ) per unit of coverage. If company A wants to be 99% sure of
meeting all claims for which it is responsible at the end of the year, at
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what level should proportional reinsurance be taken in order to maxi-
mize expected profit? What would the result be if an inflation rate of
5% is forecast for the coming year?

2. Company A believes that it can achieve the desired security (of being
99% sure of meeting all claims) without reinsurance if it increases the
volume of business appropriately. By what factor will business have to
be increased to achieve this?

If SI represents the aggregate claims for company A under a proportional
reinsurance treaty where it retains a proportion α of any claim, then SI =
αS. We let Uα be the reserves necessary for company A to be 100(1 − ε)%
confident that claims are met by net premiums plus reserves. Using a normal
approximation to S, Uα must satisfy

(1− ε) = P (αS < Uα + [1 + θ − (1 + ξ)(1− α)]E(S) )
.= P

(
N(0, 1) < [Uα + [θ − ξ(1− α)]λE(X) ]/

√
λE(αX)2

)
,

implying that

Uα
.= z1−ε

√
λE(αX)2 − λE(X) [θ − ξ(1− α)]. (3.20)

In our situation,

Uα = z0.99 α
√

(18)2(100)2 − 18 (100) [0.1− 0.2(1− α)]
= 1035.809α+ 180,

and therefore Uα ≤ 1000 ⇔ α ≤ 0.7917. We know that expected profit
is an increasing function of α, and that in this instance expected profit is
nonnegative if and only if α ≥ (1 − θ/ξ) = 0.5. The desired security is met
only if α ≤ 0.7917, and hence the optimal choice here is α = 0.7917.

If an inflation rate of 5% is expected for claim size, then from Equation
(3.20) it is clear that the necessary reserves which are denoted by U1.05

α must
satisfy U1.05

α = (1.05)Uα, hence the optimal value of α would be 0.7917/1.05 =
0.7540. Without reinsurance, the relationship of reserves to volume of busi-
ness (as indicated by λ) is given in this instance (see Equation (3.16)) by
1000 ≥ z0.99

√
λ 2(100)2 − λ(0.1)(100). This is a quadratic inequality in

√
λ.

Solving we find that this holds only if λ ≤ 3.38862 = 11.4824 (which involves
a reduction in business), or λ ≥ 29.51102 = 870.8967, representing approx-
imately a very large 48-fold increase in business in order to be confident of
meeting claims without reinsurance!

3.5.2 Excess of loss reinsurance

In claim-by-claim excess of loss reinsurance with excess level M , any claim X
is broken into that part paid by the insurer Y = min (X,M) and that paid by
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the reinsurer Z = max (X −M, 0). The reinsurer will only become involved
in a claim with probability F̄X(M) = P (X > M), hence many of the terms
in the representation SR = Z1 + · · ·+ZN will usually be zero. For example, if
the claims in a (claim-by-claim) excess of loss reinsurance arrangement with
excess level M = 500 were {390, 765, 1200, 320, 505}, then

SI = 390 + 500 + 500 + 320 + 500 = 2210 and
SR = 0 + 265 + 700 + 0 + 5 = 970.

We may therefore interpret SR = Z1 + · · ·+ZN as a compound risk model
for the reinsurer with a random number of terms N , as long as we accept
that with probability FX(M) any of the terms in this representation will be
0. Realistically, however, the reinsurer is only interested in claims in which it
will actually become involved (those exceeding M), and consequently, a more
appropriate representation for SR is of the form SR = W1 + · · ·+WNR

where
NR is the number of claims which exceed M , and the random variable W rep-
resents the excess overM of a claimX. In other words, W ∼ (X −M) |[X>M ].
Another way of viewing the relationship between Z and W is to note that Z
is a mixture of W and 0, where Z is equal to 0 with probability FX(M) and
otherwise (with probability F̄X(M)) equal to the random variable W .

Essentially, we have two equivalent representations for the aggregate amount
SR paid by the reinsurer. Take, for example, the situation where S is com-
pound Poisson with parameter λ and claim distribution X. Then SI is com-
pound Poisson with parameter λ and claim distribution Y = min(X,M).
On the other hand, SR is also compound Poisson with two different repre-
sentations. In the first instance, we may express SR as a compound Poisson
distribution of the form SR = Z1 + · · · + ZN with Poisson parameter λ and
claim distribution Z = max(0, X −M). Equivalently, it may be represented
as a compound Poisson distribution of the form SR = W1 + · · · +WNR

with
Poisson parameter λF̄X(M) and claim distribution W . Hence in particular,

E(SR) = λE(Z) = λF̄X(M)E(W ) and
V ar(SR) = λE(Z2) = λF̄X(M)E(W 2).

For some special random variables, X and W ∼ (X − M) |[X>M ] have
the same distributional form. If X is exponentially distributed with mean
m1, then (because of the memoryless property of the exponential), so is
W = (X − M) |[X>M ]. Another example is the Pareto distribution, since
if X ∼ Pareto (β, δ), then W ∼ (X −M) |[X>M ] ∼ Pareto (β, δ +M). For
the uniform distribution (X ∼ U [a, b]) on the interval [a, b], it is easy to see
that W ∼ (X −M) |[X>M ]∼ U [0, b−M ].

Example 3.16
Annual aggregate claims in a company are modeled by a compound Poisson
distribution where the typical claim is uniform on the interval [0, 1200] and
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about 60 claims are expected. An excess of loss reinsurance arrangement is
being considered whereby the reinsurer handles the excess of any claim over
M = 800.

Here F̄X(M) = P (X > 800) = 1/3, and W ∼ (X−M) |[X>800] ∼ U [0, 400].
Hence SR, the aggregate claims for the reinsurer, is compound Poisson with
parameter 60/3 = 20 and typical claim uniform on [0, 400]. In general, if U is
uniformly distributed on [0, b], then E(U i) = bi/(i+ 1). Therefore

E(SR) = 20(400)/2 = 4000,
V ar(SR) = 20(400)2/3 = 1,066,667 and
skew(SR) = (20(400)3/4)/(V ar(SR))3/2 = 0.2905.

Excess of loss reinsurance with excess level M does not affect the frequency
or rate of claims for the ceding company or insurer, but it does reduce the
amount paid on larger claims. A convenient tool in analyzing excess of loss
reinsurance is the limited expected value function (or LEV) LX(M) of the
random variable X (see [32]). For a nonnegative claim distribution X, this
function is the expected value of Y = hI(X) = min(X,M) and is given by

LX(M) = E(Y ) =
∫ M

0

x dFX(x) +MF̄X(M), (3.21)

where the integral in Equation (3.21) should be interpreted as a sum when X
is discrete. For the exponentially distributed random variable X with mean
µ, it is easy to see that the limited expected value function takes the form
LX(M) = µ [1 − e−M/µ]. This can be derived directly from Equation (3.21)
using integration by parts. However, it can also be seen by noting that

LX(M) = E(X − Z)
= µ− F̄X(M)E(W )
= µ− e−M/µ µ

= µ [1− e−M/µ].

When X has continuous density function fX , then by differentiating with
respect to M one has that L′X(M) = F̄X(M) and L′′X(M) = −fX(M), from
which it follows that L′X(M) is an increasing concave function of M with the
property that limM→∞ LX(M) = µX .

How is the limited expected value function affected by a transformation
which replaces X by aX for some positive scalar a? This might arise, for ex-
ample, when, because of an inflationary factor of k, the typical claim changes
from X to kX from one year to the next. Naively, one might initially think
that LaX(M) = aLX(M) for positive a, but this is rarely the case. In fact,
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what is true is that when a > 0 and b are constants,

LaX+b(M) = aLX

(
M − b

a

)
+ b. (3.22)

We sketch a proof for the case where X has density function fX(x). In this
case, P (aX + b ≤ x) = FaX+b(x) = FX([x − b]/a), and hence faX+b(x) =
(1/a)fX([x− b]/a). Therefore using the substitution u = (x− b)/a,

LaX+b(M) =
∫ M

0

xfaX+b(x) dx+M F̄aX+b(M)

=
∫ M

0

x

a
fX

(
x− b

a

)
dx+M F̄X

(
M − b

a

)
= a

[∫ (M−b)/a

0

u fX(u) du+
M − b

a
F̄X

(
M − b

a

)]
+ b

= aLX

(
M − b

a

)
+ b.

Therefore if X is exponential with mean 1200 and next year an inflation rate
of 6% is expected, we would consider the claim random variable U = (1.06)X
where

L(1.06)X(M) = 1.06LX(M/1.06) = 1.06 (1200) [1− e−M/(1.06·1200)].

When the claim random variable X has a lognormal distribution with pa-
rameters µ and σ2, then one has the following expression for the limited
expected value function:

LX(M) = eµ+ σ2
2 Φ

(
logM − µ− σ2

σ

)
+ M

[
1− Φ

(
logM − µ

σ

)]
. (3.23)

Figure 3.5 gives a graph of LX(M) (or equivalently E(Y ) = E[min(X,M)] )
as a function of M for a lognormal random variable X with mean 900 and
standard deviation 300. Note, for example, that LX(500) = 497, while
LX(1000) = 821. In Problem 18, you are asked to plot the limited expected
value function when X has been increased by an inflationary factor of 7%.

If the reinsurer is involved in a claim (that is, X > M), then the average
amount paid by the reinsurer is E(W ). It is worth noting that as a function
of M , this is what is referred to in the language of survival theory as the
mean residual life function. That is, if X represents a lifetime, then E(W ) =
E(X −M | X > M) is the expected amount of remaining life given survival
to age M .

We know from (3.18) and (3.19) that in order for expected net profits to be
positive, the insurer must retain a minimal amount of the business. In excess
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FIGURE 3.5
LEV function for lognormal X where E(X) = 900 and V ar(X) = 3002.

of loss reinsurance, this is equivalent to the excess level M satisfying

E(SI)/E(SR) = E(Y )/E(Z)

=

∫M

0
x dFX(x) +MF̄X(M)∫∞
M

(x−M) dFX(x)

=
E(X)−

∫∞
M

(x−M) dFX(x)∫∞
M

(x−M) dFX(x)

=
E(X)− E(Z)

E(Z)

=
E(X)− F̄X(M)E(W )

F̄X(M)E(W )
(3.24)
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≥ (ξ − θ)/θ = ξ/θ − 1. (3.25)

Note that in general, the minimum excess level M∗ which should be consid-
ered is independent of the expected claim incidence E(N). Of course, in the
unlikely event that ξ ≤ θ, any value of M might be considered.

Example 3.17
Consider a compound Poisson model S = X1 + · · ·+XN for aggregate claims
where the typical claimX ∼ Pareto (β, δ). The loading factor is θ, and excess
of loss reinsurance is available with a loading factor of ξ. We will determine
the minimum value of the excess levelM which guarantees that expected (net)
profits are nonnegative as a function of the relevant parameters.

Since X ∼ Pareto (β, δ), we know that E(X) = δ/(β − 1). Moreover,
for any excess level M , F̄X(M) = δβ/(δ + M)β and the random variable
W ∼ Pareto (β, δ +M). From Equations (3.24) and (3.25) we know that M
must satisfy

E(Y )/E(Z) =

[
δ

β − 1
−
(

δ

δ +M

)β (
δ +M

β − 1

)]
/

[(
δ

δ +M

)β (
δ +M

β − 1

)]

=
(

1 +
M

δ

)β−1

− 1

≥ ξ/θ − 1,

or, equivalently, that

M ≥ δ

[(
ξ

θ

)1/(β−1)

− 1

]
≡ M∗.

Note that for a given θ, M∗ is an increasing function of ξ. Table 3.10 gives
values for the minimum excess levels M∗ which should be considered when
X ∼ Pareto (β = 3, δ = 1200) for various values of θ and ξ. In Problem
20, you are asked to show that if X is exponentially distributed, then M∗ =
E(X) log ξ/θ.

3.5.3 Stop-loss reinsurance

Much of the theory for stop-loss reinsurance parallels that of excess of loss
reinsurance on a claim-by-claim basis, but where now we are dealing with just
the total claim amount S. In practice, a reinsurer may put an upper limit on
the amount it will cover. For great risks, the insurance or ceding company
may use several reinsurers or a reinsurer may look for other reinsurers to share
the risk.

In making a stop-loss treaty with a reinsurer, the insurer is putting a max-
imum M on its risk whereby its expected aggregate claim payment will be
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TABLE 3.10

Minimum excess level M∗ as a
function of loadings θ and ξ for
insurer when X ∼ Pareto (β, δ).
θ\ξ 0.1 0.2 0.3 0.4 0.5
0.1 0 497 878 1200 1483
0.2 0 0 270 497 697
0.3 0 0 0 185 349
0.4 0 0 0 0 142

LS(M) = E(SI) = E(min[S,M ]). The price for this treaty is the stop-loss
premium, which we assume takes the form

(1 + ξ)E(SR) ≡ (1 + ξ)E(max[S −M, 0] )

where ξ is the reinsurer’s loading factor. If θ is the insurer’s loading on poli-
cyholders, then we have seen that a potential stop-loss level M should only be
considered (in order that expected profits are nonnegative) if E(SI)/E(SR) =
LS(M)/[E(S)− LS(M)] ≥ ξ/θ − 1, or equivalently, that

LS(M) ≥
(

1− θ

ξ

)
E(S). (3.26)

In many cases, where there are large volumes of business, the distribution
of S can be well approximated by a normal distribution (for example, when
using a compound Poisson distribution with large λ). Hence it is useful to
consider the limited expected value function of the normal distribution. Up
to now we have only considered the limited expected value function for non-
negative (claim) random variables, but clearly the concept can be extended
to random variables in general. The limited expected value function for the
standard normal distribution takes the particularly nice form (which can be
easily checked by differentiation):

LN(0,1)(M) =
∫ M

−∞
xφ(x) dx + M [1− Φ(M)]

= −φ(M) + M [1− Φ(M)],

where φ and Φ are, respectively, the density and distribution functions of the
standard normal distribution. LN(0,1)(M) is an increasing concave function
of M which approaches 0 as M → ∞. From Equation (3.22), it follows that
if S ∼̇N(µ, σ2), then

LS(M) .= σ LN(0,1)

(
M − µ

σ

)
+ µ

= −σ φ
(
M − µ

σ

)
+ σ

M − µ

σ

[
1− Φ

(
M − µ

σ

)]
+ µ.
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Of course, one must take considerable care in using this tool in determining
a stop-loss treaty, for S is often skewed and we are assuming the right-hand
tail of its distribution is similar to that of a normal.

Example 3.18
Suppose that the distribution of aggregate claims S can be well approximated
by a normal distribution with mean µ = 50,000 and σ = 10,000. A loading
factor of θ = 0.1 is used by the insurance company on policyholders, and
stop-loss reinsurance with stop-loss level M is being considered at a cost of
(1 + ξ) per unit of coverage. We determine the minimum stop-loss level M∗

which the insurance company should consider in order that expected profits
are nonnegative when ξ = 0.2, 0.3 and 0.4, respectively.

From the discussion above (3.26), M∗ must satisfy

LN(0,1)

(
M − µ

σ

)
= −φ

(
M − µ

σ

)
+
M − µ

σ

[
1− Φ

(
M − µ

σ

)]
= −µ

σ

θ

ξ
,

or equivalently,

M∗ = µ + σ L−1
N(0,1)

(
−µ
σ

θ

ξ

)
.

In this situation, it is clear that M∗ is an increasing function of ξ when the
other parameters are fixed, since the more expensive (relatively speaking) rein-
surance is, the more business the insurer should retain. The limited expected
value function LN(0,1)(M) for the standard normal distribution is plotted in
Figure 3.6. When ξ = 0.2, we find that

M∗
0.2 = 50,000 + 10,000 L−1

N(0,1)

(
−5 · 0.1

0.2

)
= 50,000 + 10,000 (−2.49798) = 25,020.17,

and similarly, M∗
0.3 = 33,541.78 and M∗

0.4 = 38,069.01.

Example 3.19
We return to Example 3.7 and consider the limited expected value function
for a risk S = X1 + · · · + XN which is modeled by a compound binomial
distribution where N ∼ B(50, 0.04). Here S (see Table 3.4 where the exact
distribution was calculated in units of 10,000) has mean 6.2 and standard
deviation 6.15. Being discrete, the limited expected value function of S is of
the form

LS(M) =
M∑
0

x P (S = x) +M P (S > x).
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FIGURE 3.6
Limited expected value function for the standard normal distribution.

Using a stop-loss reinsurance level of M , the expected profit (in units of
10,000) when the loadings for the insurer and reinsurer are, respectively, θ
and ξ is given by E(PM

$ ) = θLS(M)− (1 + ξ) [6.2−LS(M)]. Figure 3.7 gives
a plot of LS(M). Note that the limiting value of the limited expected value
function is clearly 6.2 = E(S).

Figure 3.8 gives a plot of the expected profit function E(PM
$ ) when θ = 0.3

and ξ = 0.4 or ξ = 0.8. It is clear that expected profits are greater for the
case when the stop-loss reinsurance is cheaper (ξ = 0.4). When the stop-loss
level of M = 15 is used, expected profits are, respectively, 1.08 and 0.90 in
the cases where ξ = 0.4 and ξ = 0.8. Note that in both cases the limiting
value (as M → ∞) of expected profits is 0.3E(S) = 1.86, corresponding to
the situation where there is no reinsurance.

峥 周
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FIGURE 3.7
LEV function for the compound binomial distribution of Example 3.19.

3.6 Problems

1. S = X1 + · · ·+XN has a compound Poisson distribution where λ is the
Poisson parameter for N and X is the typical claim random variable. If
X is gamma distributed with parameters 2 and β (mean = 2/β), derive
expressions for the variance and skewness of S in terms of λ and β.

2. Any claim made from a portfolio of term life policies is for a constant
amount C. It is decided to model aggregate claims S with a compound
distribution of the form S = X1 + · · · +XN where E(N) = 100 but N
may be either Poisson, binomial or negative binomial. Determine the

峥 周
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FIGURE 3.8
Expected stop-loss profit for different reinsurance loadings in Example 3.19.

mean, variance and skewness of S for these three models.

3. Assume total annual claims S are modeled by a compound binomial
distribution where N ∼ B(200, 0.001) and all claims are a constant
500. Determine the mean, variance and skewness of S, and find the
probability that S exceeds 600 exactly.

4. Monthly aggregate claims S are modeled by a compound Poisson dis-
tribution where N has Poisson parameter 12 and a claim X takes the
values {1, 5, 10} with respective probabilities (0.2, 0.3, 0.5). Determine
the probabilities P (S = r) for r ≤ 200 and hence find the median, mode,
95th and 99th percentiles of S. What are the mean and variance of S?

5. Total aggregate claims S = X1 + · · ·+XN are modeled by a compound
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binomial distribution where N ∼ B(4, q = 1/2) and P (X = j) ∝ j for
j = 1, 2, 3, 4, 5. Determine the mean, variance, skewness S and find the
exact probability distribution for S using Panjer’s recursive formula.

6. Consider the collective risk model S = X1 + · · · + XN where N ∼
B(3, q = 2/3) (q being the probability of a claim) and the claim size X
is uniformly distributed on {1, 2, 3}. Determine E(S), V ar(S) and find
fS(r) for r = 0, 1, 2, . . . .

7. Show that the negative binomial distribution N ∼ NB(k, p) satisfies the
following recursive property for n = 1, . . . , max(N).

P (N = n) = (α+ β/n) P (N = n− 1)

8. S1 and S2 are random variables representing total claim amounts in
two portfolios, and both can be well modeled by compound Poisson
distributions. S1 = Y1 + · · ·+ YN1 where N1 is Poisson with parameter
λ1 = 2 and the claim size random variable Y has a distribution given
by

Y =

200 prob = 0.5
300 prob = 0.3
400 prob = 0.2.

Similarly, S2 = Z1 + · · · + ZN2 where N2 is Poisson with parameter
λ2 = 3 and the claim size random variable Y has a distribution given
by

Z =

300 prob = 0.1
400 prob = 0.3
500 prob = 0.6.

If S1 and S2 are independent, what is the probability distribution of
S = S1 + S2? What are its mean, variance and moment generating
function? What is P [S ≤ 400]? Use the recursive formula to find
P [S = r] for r ≤ 2000.

9. In the individual risk model, show that if business increases by a factor
of k, then the security loading necessary to ensure premiums meet claims
(assuming other things remained constant like claim distribution, claim
frequency and degree of confidence) is reduced by the factor 1/

√
k.

10. Insurance for accidents is provided to all employees in a large company.
Employees are classified into three types for purposes of this insurance.
It may be assumed that the claims made in a given year are independent
random variables where a maximum of one claim is made annually per
person. The claim incidence rate for each class is given below, together
with the relevant claim size distribution Bk (k = 1, 2, 3) appropriate for
each type. B1 is uniform on [70, 130], B2 is exponential with mean 150
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and B3 is Γ(2, 0.02) (hence has mean 100). The following summarizes
characteristics of the situation.

Class type k Number in class Claim probability Bk

1 500 0.02 uniform [70,130]
2 500 0.01 exp. (mean 150)
3 250 0.02 gamma [2,0.02]

It is desired that the probability that total claims exceed the premium
income be set at 0.01. If the security loadings for the three class types
are to be θ, 2θ and 3θ, respectively, determine θ and the premium for
each of the three classes using an individual risk model. What would the
appropriate value of θ be if the numbers in each category were doubled?

11. If S is compound Poisson with λ = 1 and typical claim size X which is
exponential with mean 4, what values of τ, α, and δ would you use to
approximate it with a shifted gamma distribution of the form τ+Γ(α, δ)?
Determine the exact probability that S exceeds 6 and 8, and compare
these with the probabilities found using the shifted gamma and normal
approximations to S.

12. A portfolio of 400 insurance policies for house contents (one year) is
summarized in Table 3.11 where claim size has been appropriately coded.
Note, for example, that there are 280 policies, each of which will give
rise to a claim with probability 0.03, and in particular for 160 of these
when a claim is made it is equally likely to be anywhere in the interval
[0, 24]. We are interested in modeling the annual aggregate claims for
this portfolio, using both an individual risk model (where aggregate
claims are denoted by SI) and a compound Poisson (collective risk)
model (where aggregate claims are denoted by SC).

(a) Find the mean and variances of the random variables SI and SC

and comment on their difference. Determine what security loading
θI (respectively, θC) is necessary to be 95% sure premiums exceed
claims when using the individual (compound Poisson collective)
risk model.

(b) If the numbers of policies in each of the four categories in Table
3.11 were doubled, what security loadings (θI and θC , respectively)
would be necessary to be 95% sure premiums exceed claims?

(c) A reinsurance arrangement has been made whereby the excess of
any claim over 36 is handled by the reinsurer. Using the numbers of
policies in Table 3.11, find the 95th percentiles of the total amount
of claims handled by the reinsurer under the two models.



124 RISK THEORY

TABLE 3.11

Policies by incidence and claim distribution.
Claim size distribution

Incidence Uniform [0,24] Uniform [24,48]
0.03 160 120
0.06 80 40

13. Suppose that in Example 3.12 the volume of business in each company
was in fact 10 times larger (that is, λA = 2000 and λB = 1000). De-
termine the reserves necessary for the separate companies to be 98%
sure claims are met by premiums and reserves, and also determine what
reserves would be necessary if the companies merged. Comment on the
results.

14. If aggregate claims in Example 3.13 were modeled by a compound Pois-
son distribution instead of a compound binomial, what reserves would
be necessary to be 99% sure of meeting claims? Comment on the differ-
ence between the two amounts.

15. Total claims S made in respect of a portfolio of fire insurance policies
can be modeled by a compound Poisson distribution where the Poisson
parameter is λ and the typical claim is X. Let us assume that the
claim random variable X is a 40/60 mixture of claims of type I and
II, respectively. Claims of type I are Pareto (3, 600), while those of
type II are Pareto (4, 900). Calculate P (X > 400), E(X) and V ar(X).
If the security loading of θ = 0.15 is used for determining premiums
and λ = 500, what reserves are necessary in order to be 99.9% sure
of meeting claims? What would be the effect of doubling the security
loading?

Let Y be a Pareto random variable with the same mean and variance as
X. What is P (Y > 400)? What would be the reserves necessary to be
99.9% sure all claims will be met (from premium income plus reserves)
if we had used Y instead of X in our model?

16. Consider a compound Poisson risk model for aggregate claims S =
X1 + · · · + XN where N is Poisson with parameter λ = 200 and the
typical claim is exponential with mean 5000. A proportional reinsur-
ance agreement is made whereby the insurer retains 60% of each claim
and hence has total risk SI = (0.60)S. Find the mean, variance and
skewness of SI , and compare V ar(SI) + V ar(SR) with V ar(S).

17. The aggregate annual claims S is modeled by a compound Poisson dis-
tribution where λ = 100 and the typical claim X is lognormal with
E(X) = 104 and V ar(X) = 3 ·108. Proportional reinsurance is available
at a cost of 1.3 per unit of coverage, and the baseline security loading is

峥 周




PROBLEMS 125

θ = 0.2. Determine the maximum value of α which should be considered
in order to be 98% confident that reserves of 200,000 plus net premiums
meet claims for the baseline insurance company. For this value of α,
what is the probability that the net premiums of the reinsurer will meet
its claims?

18. In Equation (3.23) we considered an expression for the LEV function
of a claim random variable X which was lognormal with mean 900 and
standard deviation 300. Its limited expected value function was plotted
in Figure 3.5. Suppose now claims have been increased by an inflationary
factor of 7%. Plot its limited expected value function and find the value
of this function at 500 and 1000.

19. Employees in a factory have subscribed to a group term life insurance
arrangement with details for the coming year in Table 3.12. It is possible
to arrange (claim-based) excess of loss reinsurance on this group whereby
the reinsurer pays the excess of any claim over M , for some agreed value
in the interval [100,000, 150,000]. Reinsurance is available at a cost of
(1 + ξ) = 1.4 per unit of coverage. If SM

I represents the amount of
claims payable by the insurer, PM

R is the reinsurance premium and M
is the excess level, find the value of M which minimizes the probability
P (SM

I + PM
R > 2, 500, 000).

TABLE 3.12

Term life insurance for factory employees.
Amount insured Number of employees Claim probability

25,000 2000 0.0030
50,000 2500 0.0025

100,000 1500 0.0040
150,000 1000 0.0050

20. Aggregate claims are being modeled by a compound distribution of the
form S = X1 + · · · + XN where X ∼ exponential. If excess of loss
reinsurance with excess level M is available from a reinsurer (at a cost
of (1+ξ) per unit cover where θ is the loading factor used by the insurer
on policyholders), show that the minimum excess level which should be
considered is given by M∗ = E(X) log ξ/θ. Construct a table similar to
Table 3.10 for M∗ when X has mean 600.

21. Assume that aggregate claims are modeled by a compound Poisson pro-
cess and that the excess of any claim over M is handled by a reinsurer
who uses a security loading ξ (while the insurance company uses a load-
ing of θ on policy holders). The typical claimX has a Pareto distribution
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with parameters (β, δ), that is

fX(x) =
βδβ

(δ + x)β+1
.

Assume that the annual expected number of claims in this process is
λ = 300, β = 3, δ = 1200, θ = 0.2 and ξ = 0.3. Determine the minimum
excess level M∗ which may be considered by the insurance company
if it is desired that expected net profit is nonnegative, and complete
the following table for a relationship between possible values of M and
expected annual net profit.

Retention limit M Expected annual profit
300 ?
800 ?
? 28,406.25

22. A portfolio of 200 one-year fire insurance policies is summarized below:

Claim size distribution
Uniform [0,48] Uniform [48,96]

Claim incidence 0.02 80 60
0.04 40 20

One can see for example that there are 140 policies where the chance of
a claim being made is 0.02, and for 80 of these if a claim is made it is
equally likely to be anywhere in the interval [0, 48].

(a) Let S denote total claims from this portfolio during the year. Using
a compound Poisson distribution to model S, determine the secu-
rity factor θ which is necessary to be 95% sure premiums exceed
claims.

(b) If the number of policies were to triple in each of the four categories,
what would be the necessary security loading?

(c) An agreement is made with a reinsurer to handle the excess of any
claim over 72. If the reinsurer uses a security factor of ξ = 0.7 on
premiums, what should it charge the insurance company for this
arrangement?

23. In Example 3.11 total claims S arising from accidents of employees in
a large factory were modeled by an individual risk model with mean
E(S) = 33,000 and variance V ar(S) = 35,151,000. Approximating this
distribution by a normal distribution with the same mean and variance,
plot the limited expected value function LS(M). The insurance com-
pany is presently using a security loading of θ = 0.37, and is considering
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stop-loss reinsurance with stop-loss level M . Determine the minimal
values of the stop-loss level M which should be considered to ensure
expected profits are nonnegative when the stop-loss premium loading ξ
of the reinsurer is both 0.5 and 0.7.

24. Plot the limited expected value function for the compound Poisson
distribution studied in Example 3.6. Consider a stop-loss reinsurance
treaty at stop-loss level M where the security loadings for the insurer
and reinsurer are, respectively, θ = 0.2 and ξ. Plot the expected profit
function E(PM

$ ) as a function of M for the insurer when the security
loading ξ for the reinsurer is both 0.3 and 0.5.

25. A motor insurance company sells two types of policies. Claims of the
first type arise as a Poisson process with parameter λ1, and those of the
second from an independent Poisson process with parameter λ2. The
(annual) aggregate claim amounts on the respective policy types are
denoted S1 and S2, and we let S = S1 + S2.

The insurance company sells 800 policies in total, 200 of type 1 and 600
of type 2. Claims arise on each policy of type 1 at a rate of one claim
per 10 years and on those of type 2 at a rate of one claim per 20 years.
The distributions of the two types of claims are given by:

Type 1 =

$1000 prob = 0.4
$1500 prob = 0.2
$2500 prob = 0.4

Type 2 =
{

$1500 prob = 0.2
$2000 prob = 0.8

(a) Compute E(S), V ar(S), skew(S), and the moment generating
function of S.

(b) Given that the insurance company uses a security loading of θ =
0.15 and the normal distribution as an approximation to the dis-
tribution of S, find the initial reserve required to be 99% sure that
premiums plus reserves will cover claims.

(c) The insurance company decides to buy reinsurance cover with ag-
gregate retention $ 50,000, so that the insurance company pays no
more than this amount in claims each year. In the year following
the inception of this reinsurance, the numbers of policies in each
of the two groups remain the same but, because of changes in the
motor insurance contracts, the probability of a claim of type 2 falls
to zero. Using the normal distribution as an approximation to the
distribution of S, calculate the probability of a claim being made
on the reinsurance treaty.
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26. Show that if X has the Pareto distribution with parameters β and δ,
then its limited expected value function takes the form

LX(M) =
δ

β − 1

[
1−

(
δ

δ +M

)β−1
]
.



4

Ruin Theory

4.1 The probability of ruin in a surplus process

If the expression U(t) represents the net value of a portfolio of risks or policies
at time t, then one would certainly be interested in studying the possible
behavior of U(t) over time. In a technical sense, we might say that ruin
occurs if at some point t in the future the net value of the portfolio becomes
negative. The probability of this event is called the probability of ruin, and
it is often used as a measure of security for a portfolio. U(t) will take into
account relatively predictable figures such as initial reserves U and premium
income up to time t, but it also must take account of claim payments that are
more random in nature as well as being harder to predict.

We study stochastic models of the so-called surplus process {U(t)}t, which
represents the surplus or net value of a portfolio of policies throughout time.
Although in most cases it is not possible to give an explicit expression for
the probability of ruin of a surplus process, an inequality of Lundberg [40]
provides a useful upper bound. A technical term known as the adjustment
coefficient provides an alternative and useful surrogate measure of security
for a surplus process. In many situations, simulation can be a useful tool
in estimating the probability of ruin. In this chapter, we investigate how
the probability of ruin in a surplus process (in both finite and infinite time) is
affected by factors such as the premium rate c, the initial reserves U , a typical
claim X, the claim arrival rate λ, and various levels and types of reinsurance.

4.2 Surplus and aggregate claims processes

We study the collective risk model over time, taking into account initial re-
serves U , incoming premiums, and the aggregate claims that are made on a
portfolio or collection of policies. In our basic model, we will assume that
premium payments are coming into the company at a constant rate of c per
unit time. For any given point in time t, we let S(t) be the aggregated claims
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up to time t. Hence if U is the amount of initial reserves, then the surplus (or
balance) U(t) at time t is given by

U(t) = U + c · t− S(t).

We call {U(t)}t the surplus process, and {S(t)}t is the aggregate claims pro-
cess where

S(t) =
N(t)∑
i=1

Xi,

N(t) is the number of claims made in the interval (0, t], and the Xi, i = 1, . . . ,
are independent identically distributed claim random variables.

There are several characteristics of the surplus process {U(t)}t that are
naturally of interest to us:

• T = min{t : t > 0, U(t) < 0}. T is a random variable (which may be
infinite), and is called the time of ruin.

• ψ(U) is the probability that the time of ruin T is in fact finite when the
initial reserves are U .

• ψ(U, t) is the probability of ruin at some point in the time interval (0, t],
given initial reserves of U .

In practice, for a given surplus process, the probability of ruin ψ(U, t) in the
specified time interval (0, t] can be a useful indicator of the security of the
process and it can often be approximated through simulation. However, ψ(U)
is often more tractable in a mathematical sense. Clearly, ψ(U, t) is increasing
in t, and limt→+∞ ψ(U, t) = ψ(U). When the counting process {N(t)}t for
the number of claims is Poisson, then it may be shown that

ψ(U) =
e−R U

E(e−R U(T ) | T < +∞)
, (4.1)

where the adjustment (or Lundberg’s) coefficient R is the unique positive
solution to λMX(r) − λ − c r = 0. The expression for ψ(U) given by (4.1) is
unfortunately not easy to determine (see [21]), and in any case is of limited
practical use.

Figure 4.1 gives a possible realization of a surplus process U(t) where the
initial reserves are U = U(0) = 4, c = 1.1, N(8) = 5, the times of the claims
in the interval [0, 8] are given by

T = (T1, T2, T3, T4, T5) = (1, 1.5, 4, 5, 5.6),

and the corresponding claim sizes are

X = (X1, X2, X3, X4, X5) = (3.1, 1.05, 2.4, 2.1, 3.06).

Ruin occurs at time T = T5!
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FIGURE 4.1
Realization of a continuous surplus process U(t).
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4.2.1 Probability of ruin in discrete time

Often it is only possible to check the status of a surplus process at discrete
periods of time. For example, we might want to check a surplus process every
10 minutes, but in other situations we might be interested in observing it
only every hour, day, month or even year. Suppose that we are interested in
observing a surplus process at times that are multiples of some h > 0. Then
we define the probability of ruin ψh(U) by

ψh(U) = P [ U(j) < 0 for some j = h, 2h, . . . ] ,

and similarly, ψh(U, t) is defined to be the probability of ruin for some j where
j ≤ t. It should be clear that the more often we observe a surplus process,
the more often we are likely to observe ruin. In other words, for any integer
k > 1,

ψkh(U) ≤ ψh(U) ≤ ψ(U).

In Figure 4.2, we can see a realization of a surplus process where ruin occurs
between (months) 4 and 5. This would be noted if the state of the process
were observed every month, but not so if it were observed only every two
months (thus indicating why ψ2h(U) ≤ ψh(U)).

4.2.2 Poisson surplus processes

One of the most basic surplus processes is the Poisson surplus process which
occurs when the counting process {N(t)}t for claims is a Poisson process. In
this case, the aggregate claims process {S(t) =

∑N(t)
1 Xi}t is called a com-

pound (aggregate claims) Poisson process. Note that when we study processes
like {N(t)}t, {S(t)}t, or {U(t)}t, we are inherently interested in a range or
possibly all points in time t, hence it is an infinite number of random variables
with which we are concerned. If we focus attention on a particular point in
time, say t0, then N(t0) has a Poisson distribution and S(t0) has a compound
Poisson distribution.

Example 4.1
Let c be the rate of premium income per year in a compound Poisson surplus
process where c = λ(1 + θ)E(X), λ = 20, θ = 0.2, U = 2000 and the typical
claim X is exponential with mean 500. The random variable U(3) represents
the surplus at the end of three years, and takes the form

U(3) = U + c · 3− S(3) = 2000 + 20(1.2) 500 · 3−
N(3)∑

1

Xi.

S(3) has a compound Poisson distribution where

E[U(3)] = 2000 + 36,000− 3(20)E(X) = 8000 and
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FIGURE 4.2
Realization of a discrete surplus process U(t).
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V ar[U(3)] = V ar[S(3)] = 3λE(X2) = 3(20)2(5002)
= 30,000,000 = (5477.226)2.

Since {S(t)}t is a compound Poisson process, it follows that for any t > 0,
V ar[U(t+ 3)− U(t)] = (5477.226)2 while E[U(t+ 3)− U(t)] = 6000.

4.3 Probability of ruin and the adjustment coefficient

Most random variables X possess a moment generating function MX(r) =
E(erX) defined in a neighborhood of 0, although the Cauchy distribution
(or t-distribution with 1 degree of freedom) with density function f(x) =
1/[π(1+x2)] is a classic example of a fat-tailed distribution that does not! In
what follows we shall assume that X has a moment generating function and
that there exists a γX (which may be positive or +∞) such that

γX = sup{r : MX(r) < +∞} and lim
r→γ−X

MX(r) = +∞. (4.2)

Here γX is the sup (or supremum) of all values of r for which MX(r) exists,
and r → γ−X represents convergence to γX from the left.

If, for example, X has a gamma distribution with moment generating
function MX(r) = (β/(β − r))δ, then γX = β. If X ∼ N(µ, σ2), then
MX(r) = eµr+σ2r2/2, and hence γX = +∞. The following technical lemma is
useful in establishing the existence of the so-called adjustment coefficient for
surplus processes with claim random variable X.

LEMMA 4.1

Let X ≥ 0 be a claim random variable where γX > 0. Then for any numbers
λ, c > 0,

lim
r→γ−X

[λMX(r)− cr] = +∞.

PROOF If γX < +∞ , then the Lemma is clearly true by Equation (4.2).
If γX = +∞, then one may find a > 0 such that P (X ≥ a) = b > 0. Hence
MX(r) = E(erX) ≥ erab, and therefore

lim
r→+∞

[λMX(r)− cr] ≥ lim
r→+∞

[λera b− cr] = +∞.
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4.3.1 The adjustment equation

The rate of premium income per unit time c can be modeled in many ways, but
since it is reasonable that premium income should exceed expected claim pay-
ments (or the pure premium) per unit time, we normally assume in a Poisson
surplus process that c > λE(X). A simple model is where c = (1 + θ)λE(X),
where θ is interpreted as a security or loading factor on premiums. Given a
(Poisson) surplus process with parameters c, λ and a claim distribution X,
we define the adjustment function to be A(r) = λMX(r) − λ − cr and the
adjustment equation by

A(r) = λMX(r)− λ− cr = 0. (4.3)

Note that the function A(r) has the following properties:

• A(0) = λMX(0)− λ− c · 0 = 0 (r = 0 is always a root of A(r) = 0).

• A′(r) = λM ′
X(r)− c, and in particular A′(0) = λE(X)− c < 0.

• A′′(r) = λM ′′
X(r) = λ

∫∞
0
x2erxfX(x)dx > 0, and hence A is convex.

• limr→γ−X
[λMX(r)− λ− cr] = +∞.

Therefore it follows that A(r) as a function of r on [0, γX) is convex, initially
0 and decreasing, and then increasing to +∞. In particular, it will have a
unique positive root R, which is defined to be the adjustment coefficient for
the surplus process.

Note that in the simple model where the premium income is a multiple of the
claim rate λ, the adjustment coefficient R is independent of λ. Some insight
into why this is the case for Poisson processes will be given later. In most sit-
uations, one would use numerical methods to find the adjustment coefficient.
Figure 4.3 is a graph of the adjustment function A(r) for the Poisson surplus
process where X ∼ Γ(2, 0.01), λ = 30, and c = (1 + 0.2)λE(X) = 7200.
Therefore by solving

A(r) = 30
(

0.01
0.01− r

)2

− 30− 7200 r = 0,

one may determine that the adjustment coefficient R = 0.001134.
If the claim size distribution X in a (Poisson) surplus process is exponen-

tial, then one may solve explicitly for the adjustment coefficient R. If X is
exponentially distributed with parameter β (that is, E(X) = 1/β) then

A(r) = λ
β

β − r
− λ− cr = 0 (4.4)

has roots r = 0 and r = β − λ/c, and hence when c = λ(1 + θ)/β, the
adjustment coefficient takes the form

R =
βθ

1 + θ
= βθ/(1 + θ). (4.5)
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FIGURE 4.3
Plot of the adjustment function A(r) = 30[1/(1− 100r)2 − 1− 240r].

Note that by definition of the adjustment coefficient R,

λ+ cR = λMX(R)

= λ

∫
eRxfX(x) dx

≥ λ

∫ +∞

0

[
1 +Rx+

R2x2

2

]
fX(x) dx

= λ

[
1 +RE(X) +

R2E(X2)
2

]
⇒ R ≤ 2

c− λE(X)
λE(X2)
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=
2θE(X)
E(X2)

.

This provides a useful upper bound (independent of λ) for the adjustment
coefficient R. In fact, 2θE(X)/E(X2) often serves as a good approximation
to R when R is small.

Example 4.2

The typical claim in a Poisson surplus process is modeled by a lognormal
random variable X where logX ∼ N(µ = 8.749266, σ2 = 0.363535). If a
premium loading of θ = 0.15 is used, then an upper bound for the adjustment
coefficient is given by

R ≤ R0 = 2(0.15)
eµ+ σ2

2

e2µ+2σ2 = 0.000028.

4.3.1.1 The Newton–Raphson method

The Newton–Raphson method is a basic technique in numerical analysis for
finding roots of an equation, and it can often be useful in finding the adjust-
ment coefficient for a surplus process. Let us suppose that we are trying to
solve A(r) = 0, where A is a differentiable function and we have a reasonable
first approximation R0 to a zero R of the function A. The basic idea behind
the Newton–Raphson method is that the tangent line at (R0, A(R0)) should
be a good local approximation to A(r) near R0, and hence we can probably
get an even better approximation to R by finding the point R1 where this
tangent line crosses the r axis. In other words, solving

A(R0)− 0
R0 −R1

= A′(R0)

for R1, we obtain R1 = R0−A(R0)/A′(R0), which is the second approximation
to R.

Proceeding in this way, we may obtain a sequence of approximations Rk, k =
1, . . . , given by Rk = Rk−1 − A(Rk−1)/A′(Rk−1), which often converges
quickly to R.

Example 4.3

Consider a Poisson surplus process where λ = 50, θ = 0.20 and claims are
constant with value 25. Then the adjustment equation takes the form

A(r) = 50MX(r)− 50− 50(1 + θ)E(X) r = 50
[
e25r − 1− 30r

]
= 0.
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FIGURE 4.4
Newton–Raphson method for finding R in Example 4.3.

A first approximation (and upper bound) to the adjustment coefficient R is
given by R0 = 2θE(X)/E(X2) = 2(0.2)25/252 = 0.016. Using the Newton–
Raphson method, a second approximation is given by

R1 = 0.016 +
−50 [ e25(0.016) − 1− 30(0.016)]

50 [25 e25(0.016) − 30]
= 0.014379.

Similarly, R2 = 0.014171, which is already very close to the actual value of
R = 0.014168. The left plot of Figure 4.4 graphs A(r) with the tangent lines
determining R1 and R2, while the plot on the right gives a more global view.

4.3.2 Lundberg’s bound on the probability of ruin ψ(U)

It will only now become apparent why the adjustment coefficient R for a
surplus process is of real interest. The adjustment coefficient R for a Pois-
son surplus process is in fact very useful in giving an upper bound to the
probability of ruin ψ(U) due to a classic inequality of Lundberg [40].
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THEOREM 4.1
If R is the adjustment coefficient in a Poisson surplus process with initial
reserves U , then an upper bound on the probability of ruin is given by e−RU .

This upper bound e−RU for the probability of ruin is often referred to as
Lundberg’s bound. The proof of this result is a nice exercise in using the
principle of induction.

PROOF Now
ψ(U) = lim

n→+∞ nψ(U),

where nψ(U) for n = 1, . . . , is the probability of ruin for the process on
or before the occurrence of the nth claim. By the principle of induction, it
therefore suffices to show that

• 1ψ(U) ≤ e−RU for all U > 0, and

• for any n ≥ 1, nψ(U) ≤ e−RU for all U > 0 implies that

n+1ψ(U) ≤ e−RU for all U > 0.

Now

1ψ(U) =
∫ ∞

0

P [X1 > U + ct | T1 = t]λe−λtdt

≤
∫ +∞

0

[∫ +∞

U+ct

e−R(U+ct−x)fX(x)dx
]
λe−λtdt

[ since x > U + ct⇒ R(U + ct− x) < 0 ]

≤ e−RU

∫ +∞

0

[∫ +∞

0

e−R(ct−x)fX(x)dx
]
λe−λtdt

= e−RU

∫ +∞

0

[∫ +∞

0

eRxfX(x)dx
]
λe−(λ+cR)tdt

= e−RU

∫ +∞

0

λMX(R) e−λMX(R) t dt

[ since λ+ cR = λMX(R) ]

= e−RU .

Next, let us assume that nψ(U) ≤ e−RU for all U > 0. Then

n+1ψ(U) = P (ruin on or before (n+ 1)st claim)
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= P (ruin on 1st claim) +
P (ruin on or before (n+ 1)st, but not on 1st)

=
∫ +∞

0

[P (X1 > U + ct | T1 = t)

+P (X1 < U + ct, ruin on or before (n+ 1)st | T1 = t)]λe−λtdt

[time T1 to the 1st claim is exponential with parameter λ]

=
∫ +∞

0

[∫ ∞

U+ct

fX(x) dx
]
λe−λtdt

+
∫ +∞

0

[∫ U+ct

0
nψ(U + ct− x)fX(x) dx

]
λe−λtdt

[ by induction nψ(U + ct− x) ≤ e−R(U+ct−x)]

≤
∫ +∞

0

[∫ ∞

U+ct

fX(x) dx
]
λe−λtdt

+
∫ +∞

0

[∫ U+ct

0

e−R(U+ct−x)fX(x) dx

]
λe−λtdt

≤
∫ +∞

0

[∫ ∞

0

e−R(U+ct−x)fX(x) dx
]
λe−λtdt

= e−RU

∫ ∞

0

λe−(λ+cR)t

[∫ ∞

0

eRxfX(x) dx
]
dt

= e−RU

∫ ∞

0

λMX(R) e−λMX(R) tdt

= e−RU .

4.3.3 The probability of ruin when claims are exponentially
distributed

In general, it is difficult to obtain an explicit and useful expression for the
probability of ultimate ruin ψ(U) for a surplus process with initial reserves
U . However, in the case of a Poisson surplus process with exponentially
distributed claims, one may show that the probability of ruin has the form

ψ(U) =
1

1 + θ
e−βθ U/(1+θ). (4.6)

Here λ is the rate of claims, θ is the premium loading, the initial reserves are
U , and the claim size random variable X is exponential with mean 1/β. A
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derivation of this result is given in Subsection 4.3.3.2. The following observa-
tions about this probability of ruin should be noted:

• The probability of ruin clearly does not depend on λ, the rate at which
claims are made per unit time. This initially may seem surprising. In
order to gain some insight into why this is the case, consider two Poisson
surplus processes {U1(t)}t and {U2(t)}t with exponential claims that
are identical except that the claim rate λ1 for the first process is ten
times the claim rate λ2 of the second (λ1 = 10λ2). In theory, the only
difference between the two processes is that things are happening ten
times faster in the first process. There is a natural 1−1 correspondence
between realizations in the two processes, where corresponding to any
realization in the second process is the (telescoped) realization in the
first, which is identical except that it proceeds at 10 times the rate. In
particular, any realization in the second that results in ruin at time T
corresponds naturally to a realization in the first where ruin occurs at
T/10.

• When the security loading θ on premiums is 0, then ψ(U) = 1 and ruin
is certain. This is not totally unexpected, since in this case we are only
collecting in premiums what we expect to pay in claims, and no matter
how much we are holding in reserves U , random fluctuations in claims
will inevitably lead to ruin.

• ψ(U) is a decreasing function of β. Therefore as the mean (1/β) of
the exponential claim distribution increases (that is, β decreases), the
probability of ruin increases when other parameters are held fixed.

• When claims are exponential the adjustment coefficient takes the form
R = βθ/(1 + θ), and therefore

ψ(U) =
1

1 + θ
e−RU ≤ e−RU ( = Lundberg upper bound),

and the probability of ruin (as a function of U) is proportional to the
Lundberg upper bound.

• The probability of ruin ψ(U) is a decreasing function of U since

∂

∂U
ψ(U) =

−βθ
1 + θ

ψ(U) < 0,

and therefore when other parameters are held fixed, the probability of
ruin decreases with increasing initial reserves.

• The probability of ruin ψ(U) is a decreasing function of θ since

∂

∂θ
ψ(U) = − 1 + θ + βU

(1 + θ)2
ψ(U) < 0,
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and therefore when other parameters are held fixed, the probability of
ruin decreases as the loading which is put on premiums increases.

In the following example of three Poisson surplus processes, only the claim
size distribution varies, and for each process the adjustment coefficient R is
calculated or estimated.

Example 4.4
The surplus process for a risk is modeled by a Poisson surplus process where
the security loading for premiums is 0.2 and the Poisson parameter is 50. We
determine the adjustment coefficient, R, for the surplus process in each of the
following situations (where X denotes the claim random variable).

1. X1 is exponential with mean 5 = 1/β. Then the adjustment coefficient
is R = βθ/(1 + θ) = 0.2/6 = 1/30 = 0.033333.

2. X2 ∼ Γ(β = 2, δ = 0.4). The adjustment equation takes the form

λ

[(
0.4

0.4− r

)2

− 1− 6r

]
= 0.

Solving the quadratic equation 150r2 − 95r+ 4 = 0, one finds that R is
either 0.045353 or 0.587980. It must be the former since the adjustment
equation (and the moment generating function of X2) is only defined
for r < 0.4.

3. X3 ∼ N(5, 12). Here the adjustment coefficient R is the unique positive
solution to

g(r) = A(r)/λ = e5r+r2/2 − 1− 6r = 0.

We know that an upper bound for R is given by

R0 =
2θE(X3)
E(X2

3 )
=

2(0.2)5
1 + 52

= 0.076923.

Using this as an initial approximation to R and applying the Newton–
Raphson method one obtains

R1 = R0 −
g(R0)
g′(R0)

= 0.068909

and ultimately, that R = 0.067824.

The adjustment coefficient R is a measure of risk, and since ψ(U) ≤ e−RU ,
larger values of R correspond to smaller values of the Lundberg upper bound.
Note that although the mean claim size is equal to 5 in each case, one has
that V ar(X1) > V ar(X2) > V ar(X3). Hence it is not surprising that more
volatility in claim size leads to more risk and corresponding lower values of
R.



RUIN AND THE ADJUSTMENT COEFFICIENT 143

4.3.3.1 Probability of ruin in finite time

Although Equation (4.6) provides a neat expression for the probability of
(eventual) ruin in a Poisson surplus process when claims are exponentially
distributed, there is no such expression for the probability of ruin ψ(U, t) in
finite time in this situation. However, in this case (and indeed in many such
processes) simulation can be useful and informative in estimating ψ(U, t).
Consider a Poisson surplus process where λ = 1, θ = 0.1, X is exponential
with mean 10, and initial reserves are either U = 50 or 100. Figure 4.5 gives
the result of a simulation exercise carried out in R to evaluate both ψ(50, t)
and ψ(100, t) for this process. In each case, 5000 realizations of the process
were simulated where the time to ruin T (which in many cases would be in
excess of some cutoff point – in this situation, the cutoff was chosen to be
1000) was determined. Then using the procedure (ecdf) for the empirical
distribution function of a random variable, the results for ψ(U, t) were plotted
on the interval[0, 400]. For each plot the upper dotted lines give the Lundberg
upper bounds for the probabilities of ruin (e−R 50 = 0.634736 and e−R 100 =
0.402890), while the lower dashed lines give the respective probabilities of
eventual ruin ψ(50) = 0.577033 and ψ(100) = 0.366264.

The following R code was used (5000 times) to obtain realizations of the
time to ruin (RT) in the process when U = 50.

EX<-1/0.1 U0<-50 theta<-0.1 lambda<-1 R<-rep(1,5000) for (i

in1:5000) { wait<-rexp(1000,rate=1) T<-rep(0,1000) for (j in 1:1000)

T[j]=sum(wait[1:j]) claim<-rexp(1000,rate=1/EX) U<-rep(0,1000) for

(j in 1:1000) U[j]=U0+1*1.1*10*T[j]-sum(claim[1:j]) a<-1:length(U)

if (length(U[U<0])>0) RT<-T[min(a[U<0])] else RT<-1000 R[i]<-RT }

4.3.3.2 Derivation of the probability of ruin when claims are
exponentially distributed

We derive the explicit expression for the probability of ruin given by (4.6)
using a classic integral-differential equation approach. Another interesting
development using Laplace transforms is given in Dickson [20], which also
provides an extensive treatment of risk and ruin in general.

We use ψ̄(U) = 1− ψ(U) to denote the surplus process survival probability
(the probability that ruin does not occur) with initial reserves U . Assume
that we have a Poisson surplus process whereby the time T to the first claim
is exponentially distributed with parameter λ. In deriving an expression for
ψ̄(U) we will condition on (or average over) the time of the first claim T = t
and assume that this first claimX does not cause ruin (henceX = x < ct+U).
If this happens, then the probability of the process surviving after time t is
ψ̄(U + ct− x)), and hence we may write

ψ̄(U) =
∫ ∞

0

[∫ U+ct

0

fX(x) ψ̄(U + ct− x) dx

]
λ e−λtdt

(letting w = U + ct)



144 RUIN THEORY

0 200 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

Time t

Ψ
(5

0,
 t)

e(−R50)

0 200 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 

Time t

Ψ
(1

00
, t

)
e(−R100)

FIGURE 4.5
Probability of ruin in finite time when X is exponential with mean 10, λ = 1,
and θ = 0.1.

=
∫ ∞

U

[∫ w

0

fX(x) ψ̄(w − x) dx
]
λ

c
e−λ(w−U)/c dw

=
λ

c
eλ U/c

∫ ∞

U

[∫ w

0

fX(x)ψ̄(w − x)dx
]
e−λw/c dw. (4.7)

Using ψ̄ ′(U) = ∂ψ̄(U)/∂U to denote the partial derivative with respect to U ,
one has on differentiating expression (4.7)

ψ̄ ′(U) =
(
λ

c

)2

eλ U/c

∫ ∞

U

[∫ w

0

fX(x)ψ̄(w − x) dx
]
e−λw/c dw
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+
λ

c
eλ U/c

(
−e−λ U/c

)∫ U

0

fX(x) ψ̄(U − x) dx

=
λ

c
ψ̄(U)− λ

c

∫ U

0

fX(x) ψ̄(U − x) dx. (4.8)

Since ψ̄(U) = 1− ψ(U), it follows from Equation (4.8) that

ψ ′(U) = −

[
λ

c
(1− ψ(U))− λ

c

∫ U

0

fX(x) [1− ψ(U − x)] dx

]

=
λ

c
ψ(U)− λ

c

∫ U

0

fX(x)ψ(U − x) dx− λ

c
F̄X(U). (4.9)

Lundberg’s inequality ensures that limU→∞ ψ(U) = 0, and hence we may
integrate expression (4.9) as a function of U yielding∫ ∞

0

ψ ′(U) dU =
λ

c

[∫ ∞

0

ψ(U)−
∫ ∞

0

∫ U

0

fX(x)ψ(U − x) dx

]
dU (4.10)

−λ
c

∫ ∞

0

F̄X(U) dU.

The two expressions on the right-hand side of Equation (4.10) are equal since
by changing the order of integration∫ ∞

0

[∫ U

0

fX(x)ψ(U − x) dx

]
dU =

∫ ∞

0

[∫ ∞

x

ψ(U − x) dU
]
fX(x) dx

(letting w = U − x)

=
∫ ∞

0

[∫ ∞

0

ψ(w) dw
]
fX(x) dx

(letting U = w)

=
∫ ∞

0

[∫ ∞

0

ψ(U) dU
]
fX(x) dx

=
∫ ∞

0

ψ(U) dU.

Therefore (again using Lundberg’s inequality) one may conclude that

ψ(0) = −
∫ ∞

0

ψ ′(U) dU

=
λ

c

∫ ∞

0

F̄X(x) dx
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=
λE(X)

c

=
1

1 + θ
(when c = (1 + θ)λE(X)).

Suppose now that the claim size distribution forX is exponential with mean
1/β. The expression for ψ ′(U) given in (4.9) becomes

ψ ′(U) =
λ

c
ψ(U)− βλ

c

∫ U

0

e−β x ψ(U − x) dx− λ

c
e−β U

=
λ

c
ψ(U)− βλ

c
e−β U

∫ U

0

eβ x ψ(x) dx− λ

c
e−β U (4.11)

and hence

ψ ′′(U) =
λ

c
ψ ′(U) +

β2λ

c
e−β U

∫ U

0

eβ x ψ(x) dx− βλ

c
ψ(U) +

β λ

c
e−β U.(4.12)

Adding expression (4.12) and β times expression (4.11), one finds that

ψ ′′(U) + β ψ ′(U) =
λ

c
ψ ′(U),

or that ψ(U) satisfies the second order homogenous differential equation

ψ ′′(U) + (β − λ

c
)ψ ′(U) = 0.

Therefore ψ(U) must be of the form

ψ(U) = k0 + k1 e
−(β−λ/c) U

for some constants k0 and k1. Clearly, k0 = 0 since by Lundberg’s inequality
limU→∞ ψ(U) = 0. Evaluating at U = 0, it follows that ψ(0) = 1/(1+θ) = k1,
and therefore one obtains the classic expression for probability of ruin in a
Poisson surplus process when claims are exponential:

ψ(U) =
1

1 + θ
e−βθ U/(1+θ).

4.4 Reinsurance and the probability of ruin

In sharing a risk with a reinsurance company, a ceding company hopes to
reduce its risk by passing on some of the responsibility to the reinsurer. Of
course, this will come at a cost, which must be weighed up against any increase
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in security obtained. What risk-based criteria should one use in deciding on
an appropriate level of reinsurance? One could make a decision on the basis
of maximizing expected profits. Given that the loading factor ξ a reinsurance
company will put on its premium charges to the ceding company is normally
greater than that (θ) used by the ceding company on the policyholders, the
criteria of maximizing expected profits will usually result in no reinsurance.
Another criterion to consider is that of minimizing the probability of ruin.
Given that this is often difficult to calculate exactly, we may use the adjust-
ment coefficient R (or equivalently, the Lundberg upper bound) as a proxy
for this measure of security. Hence we would be looking for reinsurance agree-
ments yielding large values of R.

In a claim-by-claim based reinsurance agreement, each individual claim X
can be split into two components,

X = Y + Z = hI(X) + hR(X),

which are, respectively, handled by the insurance (Y = hI(X)) and reinsur-
ance (Z = hR(X)) companies. Assuming a Poisson process for claim inci-
dence, the expected net profit at time t for the insurer is therefore

λ t [(1 + θ)E(X)− (1 + ξ)E(Z)− E(Y )] = λ t [θE(Y ) + (θ − ξ)E(Z)]
= λ t [θE(X)− ξE(Z)]
≥ 0

⇔ θ/ξ ≥ E(Z)/E(X) or equivalently, E(Y )/E(X) ≥ 1− θ/ξ.

In this section, we investigate ruin for both proportional and excess of loss
reinsurance arrangements.

4.4.1 Adjustment coefficients and proportional reinsurance

In proportional claim-by-claim reinsurance, let α be the proportion of any
claim retained by the insurer. Hence each individual claim can be represented
as X = αX + (1 − α)X = hI(X) + hR(X). If our objective is to maximize
the adjustment coefficient R as a measure of security, what value of α should
we select?

Remember that in order for net profit to be nonnegative, we must have
θ/ξ ≥ E(Z)/E(X) = 1 − α, or equivalently α ≥ 1 − θ/ξ. The expected
net monetary gain (or profit) per unit time for the insurer is [(1 + θ) − (1 +
ξ)(1 − α) − α]λE(X). This is an increasing linear function of α (assuming
that θ ≤ ξ) and hence is maximized when α = 1 (i.e., there is no reinsurance).
Therefore if maximizing net gain is the objective, one would not make use
of reinsurance. In practice, however, we would want to achieve a satisfactory
degree of security, and the adjustment coefficient R might serve as a proxy
for this.



148 RUIN THEORY

For a Poisson surplus process where a proportion α of each claim is retained
by the insurer (and the reinsurer handles the rest), the surplus process (for
the insurer) takes the form

U(t) = U + c · t− SI(t),

where c = [(1+θ)− (1+ξ)(1−α)] λE(X) is the net premium income per unit
time, and SI = α(X1 + . . . + XN(t)) =

∑N(t)
1 Yi. Therefore the adjustment

equation for the insurer is now

A(r) = λMαX(r)− λ− λ[(1 + θ)− (1 + ξ)(1− α)] E(X) r = 0.

In the special case where X is exponential with mean 1/β, the insurer’s
typical claim Y is also exponential but with mean α/β, hence (from Equation
(4.4)) the adjustment coefficient is given by

R =
β

α
− λ

c
=

β

α
− β

[(1 + θ)− (1 + ξ)(1− α)]
=

β[θ − ξ + ξα]
α[θ − ξ + α(1 + ξ)]

. (4.13)

In the unlikely situation where θ = ξ, then R = βθ/α(1 + θ) which is a
decreasing function of the retention level α. Here any value of α is permissable
(since 1− θ/ξ = 0) and R would be maximized by selecting α = 0. However
in this case (where reinsurance is very cheap) one would be passing on all of
the business to the reinsurer, including the possibility for the insurer to make
a profit!

Example 4.5
Consider the situation where the aggregate claims for an insurance company
are modeled by a compound Poisson process where the rate parameter is λ,
claims are exponentially distributed with mean 50, and a security loading of
θ = 0.15 is used to determine premiums. Proportional reinsurance is available
from different companies (which use varying security loadings to determine
their pricing structures for ceding insurance companies). Let us investigate
how the optimal level of retention for the insurance company varies with
different values of ξ, when using the criteria of maximizing the adjustment
coefficient R.

When θ = 0.15 and ξ = 0.20, the adjustment coefficient as a function of
the retention level α in the interval (1− θ/ξ = 0.25, 1) takes the form:

R(α) =
1

50α

[
−0.05 + 0.20α
−0.05 + 1.20α

]
=

4α− 1
50(24α2 − α)

.

Differentiating with respect to α, one finds that

R′(α) =
1
50

−96α2 + 48α− 1
(24α2 − α)2
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and hence R(α) has a maximum occurring at α∗ = 0.478218. The optimal
decision for the ceding insurance company in this case is therefore to retain
α = 0.478218 of each claim and obtain an adjustment coefficient of R =
0.003644. This compares with an adjustment coefficient of R = 0.002609 if
the company decides not to purchase this reinsurance (i.e., use α = 1). Note
that in theory any retention level α in the range (0.478218, 1) is preferable to
α = 1 since R as a function of α is decreasing in this interval.

Table 4.1 gives the optimal values of the retention level α∗ as well as the
corresponding adjustment coefficients R(α∗) for the different loadings ξ =
(0.20, 0.25, 0.30, 0.35). Note in this case that R(α∗) is a decreasing function
of ξ. Note also that if ξ = 0.35, then the optimal decision is to go with
α = 1 since reinsurance is too expensive at any level of retention. Figure 4.6
plots R(α) as a function of the proportion α retained for both ξ = 0.20 and
ξ = 0.35.

TABLE 4.1

Optimal retention levels α∗ and R(α∗)
for varying ξ.
ξ α∗ R(α = α∗) R(α = 1)
0.20 0.478218 0.003644 0.002609
0.25 0.757771 0.002786 0.002609
0.30 0.938529 0.002620 0.002609
0.35 1 0.002609 0.002609

4.4.2 Adjustment coefficients and excess of loss reinsurance

In an individual claim-based excess of loss reinsurance arrangement, there is
an excess level M such that for any claim X the insurance company handles
Y = hI(X) = min(X,M) and the reinsurer the remainder Z = hR(X) =
max(0, X − M). Again, using θ and ξ for the respective loadings of the
insurer and reinsurer, in order that net premium income for the insurer exceeds
expected claim costs, the excess level M must satisfy

E[Y ]
E[X]

≡ gY |X(M) =

∫M

0
xfX(x)dx+MF̄X(M)∫∞

0
xfX(x)dx

≥ 1− θ

ξ
.

When X is continuous (with −F̄ ′X(x) = fX(x)), then ∂/∂M(gY |X(M)) =
F̄X(M) ≥ 0 , and hence E[Y ]/E[X] is an increasing function of M . Therefore
the ceding company would only consider excess levels M that are greater than
the value M0, satisfying gY |X(M0) = 1− θ/ξ.
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FIGURE 4.6
Adjustment coefficients as a function of the proportion α retained in propor-
tional reinsurance, for reinsurance loadings ξ = 0.20 and ξ = 0.35.

If X is exponential with mean 1/β, then

E[Y ]
E[X]

≡ gY |X(M) =

∫M

0
xβe−βxdx+Me−βM

1/β
= 1− e−βM ,

and the insurer should only consider excess levels M larger than M0 =
− log(θ/ξ) / β = − log(θ/ξ)E(X). Therefore if the surplus process has param-
eters θ = 0.2, ξ = 0.3 and X is exponential with mean 300, then the insurer
should only consider excess of loss arrangements where M ≥M0 = 121.6395.
Similarly, one may show that when X is Pareto with parameters α and δ, then
the minimum excess level M0 to consider satisfies [δ/(δ +M0)]α−1 = θ/ξ.
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If X = Y + Z is exponential with mean 1/β, then E(Z) = e−βM/β,

MY (r) =
∫ M

0

erxβe−βx dx + erM F̄X(M)

=
β

β − r

(
1− e−M(β−r)

)
+ e−M(β−r),

and the adjustment equation takes the form

λ[MY (r)− 1− [(1 + θ)E(X)− (1 + ξ)E(Z)] r] =

λ

[
β

β − r

(
1− e−M(β−r)

)
+ e−M(β−r) − 1− 1

β

[
(1 + θ)− (1 + ξ)e−βM

]]
= 0.

Example 4.6

Consider again the Poisson surplus process in Example 4.5, but where now
excess of loss reinsurance with excess level M is being considered. If θ = 0.15,
then the adjustment coefficient R as a function of the excess level M and ξ
satisfies

0.02
0.02− r

[
1− e−M(0.02−r)

]
+e−M(0.02−r)−1− 1

0.02
[(1.15)−(1+ξ)e−0.02M ]r = 0.

Figure 4.7 plots the adjustment coefficient R as a function of the excess level
M for ξ = 0.20 and ξ = 0.35. When ξ = 0.20, then the optimal decision
(when trying to maximize R) for the ceding insurance company is to use
M∗ = 29.2841, thereby obtaining an adjustment coefficient of R = 0.006221.
This compares with an adjustment coefficient of R = 0.002609 if the company
decides not to purchase this reinsurance (i.e., use M = ∞). Note that in
theory any excess level M in the range (29.2841, 100) is preferable to M = 100
since R as a function of M is decreasing in this interval.

Table 4.2 gives the optimal values of the excess level M , as well as the cor-
responding optimal adjustment coefficients R(M∗) for the different loadings
ξ = (0.20, 0.25, 0.35, 0.50). Note that, R(M∗) is a decreasing function of ξ.
The net annual (or other unit of time) gain PM

$ for the surplus process with
excess level M has expected value

E(PM
$ ) = (1 + θ)E(X)− (1 + ξ)E(Z)− E(Y ) =

θ − ξe−βM

β
,

which is an increasing function of M .

峥 周
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TABLE 4.2

Optimal excess levels M∗ and corresponding
R(M∗) for θ = 0.15 and varying ξ.

ξ M∗ R(M = M∗) R(M = ∞)

0.20 29.2841 0.006221 0.002609
0.25 53.9413 0.004140 0.002609
0.35 94.7649 0.003168 0.002609
0.50 143.999 0.002815 0.002609
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FIGURE 4.7
Adjustment coefficients as a function of excess of loss reinsurance level M for
reinsurance loadings ξ = 0.20 and ξ = 0.35.

4.5 Problems

1. The net balance in a surplus process is only checked annually. The
aggregate claims process is compound Poisson with an annual claims
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rate of λ = 0.5, the loading factor for premiums is θ = 0.2, initial
reserves are U = 0.5, and the typical claim is uniformly distributed
on {1, 2, 3}. Determine the probability that the aggregate surplus is
nonnegative for the first two years. What would the answer be if the
claim rate were doubled and the loading factor halved?

2. In a large company, two separate Poisson surplus processes are being
monitored. In process A, reserves of UA = 3000 are available, approx-
imately λA = 25 claims are expected annually, θA = 0.20, and the
typical claim XA is a (0.75, 0.25) mixture of an exponential random
variable with mean µ = 60 and an exponential with mean µ = 20. For
process B, UB = 1000, λB = 30, θB = 0.20 and XB ≡ 50. For both of
these processes, find the adjustment coefficient of the process and com-
ment on the differences. Using Lundberg’s inequality, determine upper
bounds on the probabilities of ruin for the two processes.

3. Claims made by males in a portfolio of policies can be modeled by a
compound Poisson process with Poisson parameter λM = 40 where the
typical claim is exponential with mean 20. Similarly, but independently,
claims made by females can be modeled as a compound Poisson process
but where λF = 40 and a typical claim is exponential with mean 10.
Security loadings of 0.4 and 0.2 are used, respectively, for males and
females in determining premiums. Find the adjustment coefficient for
this surplus process and give an upper bound on the probability of ruin
if initial reserves are U = 40.

What would the answers be if in each case (for males and females) half as
many claims are expected, the sizes of the claims are only half as much
(that is, respectively, exponential with means 10 and 5), and reserves
are U = 200?

4. In a Poisson surplus process suppose that the typical claim X is uni-
formly distributed on (0, 1) and that θ = 0.1. Use the Newton–Raphson
method (with initial estimate 2θE(X)/E(X2) ) to find the adjustment
coefficient R. If initial reserves are U = 10 what would you estimate for
an upper bound on the probability of ruin?

5. In a compound Poisson surplus process the typical claim X ∼ Γ(2, 0.5).
Find the adjustment coefficient R and give a bound on the probability
of ruin if initial reserves are U = 25 and θ = 0.5.

6. Determine an upper bound for the adjustment coefficient for a Poisson
surplus process where the typical claim X ∼ W (c = 0.000001, γ = 2) is
Weibull, and the loading factor on premiums is given by θ = 0.25.

7. Within a large insurance company, three separate Poisson surplus pro-
cesses are being managed where the respective parameters are given in
Table 4.3. For each process, find the adjustment coefficient and the
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Lundberg upper bound on the probability of ruin if in each case initial
reserves are U = 150. Rank the processes by this measure of risk.

TABLE 4.3

Poisson surplus process
parameters (insurance).
Process λ θ Claim size

a 15 0.3 X ≡ 10
b 30 0.2 X ∼ Γ(1, 0.1)
c 20 0.1 X ∼ Γ(2, 0.2)

8. In a reinsurance company, three separate Poisson surplus processes are
being managed, where the respective parameters are given in Table 4.4.
Here for any process, U = initial reserves, λ = Poisson parameter, θ =
security loading and X is typical claim size. For each process find the
adjustment coefficient. Using the Lundberg bound as an approximation
for the probability of ruin, rank the processes relative to their probabil-
ities of ruin.

TABLE 4.4

Poisson surplus process parameters (reinsurance).
Process U λ θ Claim size X

A 200 10 0.2 X ≡ 20
B 130 20 0.4 X ∼ exponential (µ = 12)
C 250 25 0.1 X ∼ Γ(2, 0.2)

9. A company manages a Poisson surplus process where the claim random
variable X has the following distribution

x P (X = x)
1,000 0.9

10,000 0.1

If the company uses a 20% loading factor, find an upper bound R0 for
the adjustment coefficient R of the form R0 = 2θ E(X)/E(X2). With
R0 as an initial estimate, use the Newton–Raphson method to find R. If
U , the current reserves of the company is 100,000, give an upper bound
for the probability of ruin.

10. The surplus process for company A is Poisson where the typical claim
is exponential with mean 1.5, the Poisson parameter λA = 200, the
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loading factor on premiums is θA = 1, and initial reserves are UA = 18.
Find both the exact probability of ruin and the Lundberg upper bound
on ruin for this process.

In company B the Poisson surplus process is also Poisson with parameter
λB = 200, and θB = 1 UB = 18. Here, however, the typical claim is
equally likely to come from a single person or a couple. If it comes from
a single person it is exponential with mean 1, and if from a couple it is
the sum of two independent exponentials each with mean 1. Find the
Lundberg upper bound on ruin for company B.

11. The aggregate claims S for a risk is a compound Poisson process with
Poisson parameter λ and typical claimX which is exponential with mean
1/α. The premium for this risk is (1+ θ)λE(X), and initial reserves are
U . If nψ(U) denotes the probability of ruin at or before the nth claim,
for n = 1, 2, . . ., then show that 1ψ(U) = e−αU/(2 + θ), and use this to
find an expression for 2ψ(U).

12. In a Poisson surplus process for aggregate claims, initial reserves are
U = 500, the annual claim rate is λ = 40 and the typical claim X is
exponential with mean 100. A premium loading of θ = 0.3 is used on
policyholders.

(a) Determine the mean and variance of U(2), the net value of the
process after two years.

(b) What is the adjustment coefficient for the process described above,
and what is the probability of ruin for this process? How does this
compare with the Lundberg bound for the probability of ruin?

(c) Proportional reinsurance is available whereby a proportion α of
each claim is retained by the insurer (and the reinsurer handles the
remaining proportion 1 − α). The reinsurance loading is ξ = 0.4.
Show that the adjustment coefficient for the process with this type
of reinsurance as a function of α is given by

R(α) =
1

100

[
4α− 1

α(14α− 1)

]
.

What is the maximum value of R(α), and for what values of α is
R(α) ≥ R(1)?

13. Aggregate claims for a risk can be modeled by a compound Poisson
process with Poisson parameter λ and where claims are exponential with
mean 80. The insurance company uses a security loading of θ = 0.3,
while reinsurance is available with a security loading of ξ = 0.4.

(a) The reinsurance company is offering proportional reinsurance where
the insurance company pays α of any claim X (and the remainder
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is taken up by the reinsurance company). What is the minimum
value of α which the insurance company should consider if it wishes
net premiums to exceed expected claims (net of reinsurance)? Sup-
pose in fact that the insurance company does decide to go ahead
with proportional reinsurance, keeping a proportion α = 0.40 of
every claim. Find the adjustment coefficient and an upper bound
on the probability of ruin if initial reserves are U = 450.

(b) Suppose that the reinsurance company is also offering an excess
of loss type of reinsurance with excess level M (and ξ = 0.4). If
the insurance company wants net premiums to exceed expected
claims, show that the minimum value of M that it should consider
is M = 23.01.

14. The aggregate claims process in a company is well approximated by a
compound Poisson distribution with Poisson parameter 200 and indi-
vidual claim size density given by f(x) = e−(x−5), x > 5. The premium
charged by the company to cover this risk includes a security loading of
θ = 0.25. Derive a formula for the adjustment coefficient for this claims
process and give a good upper bound for R in this situation.

Suppose excess of loss reinsurance is available from a reinsurer with a
relative security loading of ξ = 0.50. The table below shows for various
values the retention limits M and the expected profit for the insurer (net
of reinsurance costs) with missing values indicated by *. Complete the
table by filling in the missing *. Comment on the relationship between
retention limit and profit.

Retention limit M Expected annual profit
5 200.00
6 ?
? 286.47
∞ ?

15. The aggregate claims process in a company is being modeled by a com-
pound Poisson surplus process where the Poisson parameter is λ = 20,
initial reserves are U = 1200, a typical claim is exponentially distributed
with mean 50, and the security or safety loading is θ = 0.2.

The insurance company is considering buying proportional reinsurance
where a portion α of every claim is retained (and the reinsurance com-
pany handles 1−α of each claim). If the reinsurance loading is ξ = 0.3,
what is the minimum value of α that the insurance company should
consider? Show that the adjustment coefficient for this process when α
is the proportion of each claim retained is given by

R(α) =
1

50α

[
3α− 1
13α− 1

]
.
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For what values of α is the adjustment coefficient (a measure of security)
as great as it is when no reinsurance is used?

16. Consider a Poisson Surplus process where claims are exponential with
mean 1/β, the unit claim rate parameter is λ, and where an excess of
loss reinsurance arrangement is in place with excess level M . Loadings
of θ and ξ are used, respectively, by the insurer and reinsurer. Show
that an upper bound on the adjustment coefficient R for the insurer is
given by

β(θ − ξe−βM )
1− e−βM −Mβe−βM

.

17. The process used to model a risk is a Poisson surplus process with
Poisson parameter λ and individual claim size X which is exponential
with mean 50. The insurance company uses a security loading of θ = 0.4
and reinsurance is available whereby a security loading of ξ = 0.5 is used.

(a) Proportional reinsurance whereby the reinsurance company pays
(1 − α) of any claim X is available. Find the minimum value of
α which the insurance company should consider if it wants net
premiums to exceed expected claims (net of reinsurance). Suppose
now the insurance company decides to go ahead with proportional
reinsurance with α = 0.5. Find the adjustment coefficient and
an upper bound on the probability of ruin if initial reserves are
U = 300.

(b) Suppose now the same reinsurance company offers excess of loss
insurance with excess level M (and ξ = 0.5). If the insurance
company wants net premiums to exceed expected claims, show that
the minimum value of M it should consider is M = 11.16.

18. The typical claim X in a (Poisson) surplus process is uniformly dis-
tributed on the interval [0, 50]. If excess of loss reinsurance is being
considered with excess level M , show that the adjustment coefficient for
the ceding company satisfies

1
50r

[erM − 1] + erM [1−M/50]− {1 + [(1 + θ)25− (1 + ξ)E(Z)]r} = 0.

If the insurer’s loading θ = 0.2 and the reinsurer’s loading ξ = 0.3, find
the minimum value of M which should be considered.

19. Individual claims in a Poisson surplus process are modeled by a random
variable X with density given by

fX(x) = (a+ bx) e−x for x > 0, where a+ b = 1, a > 0.

A loading factor of θ is used to determine premiums. Determine the
mean, variance and moment generating function of X in terms of a and
b.
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(a) Write down the adjustment equation for this process in terms of
a, b and θ, and find an upper bound for the adjustment coefficient
R in terms of these parameters.

(b) Now suppose that a = b = 1/2 and that a loading factor of θ = 1/4
is used to determine premiums. Find the adjustment coefficient R
and give an upper bound on the probability of ruin for this process
when initial reserves are U = 50.

(c) The direct insurer in this case is considering proportional reinsur-
ance where 40% of each claim is ceded to the reinsurer and the
reinsurer’s loading factor is ξ = 0.5. Write down the adjustment
equation for the direct insurer in this case.

20. Consider a Poisson surplus process where λ = 1, θ = 0.1, X is Pareto
(α, δ) with E(X) = δ/(α− 1) = 20/(3− 1) = 10, and initial reserves are
either U = 50 or 100. Using simulation, estimate ψ(U, t) in the interval
[0, 400].
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Credibility Theory

5.1 Introduction to credibility estimates

Credibility theory in general insurance is essentially a form of experience-
rating that attempts to use the data in hand as well as the experience of
others in determining rates and premiums. An interesting and early histori-
cal example of the use of credibility theory deals with the setting of premium
rates for employers to cover for workers compensation in the early 20th century
[51]. The challenge (to a casualty actuary) was often to balance the claims
experience of a particular employer with that of all employers having simi-
lar working practices and conditions in determining premiums for insurance
coverage.

In this chapter, we address the challenge of trying to estimate expected
future claim numbers and/or total aggregate claims for a portfolio of policies
on the basis of rather limited sample or current information x, but where other
collateral (and possibly useful) information is also at hand. Let us assume
there is crucial parameter of interest denoted by θ, which, for example, may
be the annual claim rate or a related expected aggregate claims total. Often
there is other (in some cases considerable) collateral or prior information from
business or portfolios of a somewhat similar nature, which might be useful in
estimating θ. Let us denote by θ̂s an estimate of θ based on the sample
information x, and by θ̂c an estimate of θ based on the available collateral
information. In the situation where θ is a mean, then θ̂s might be the sample
mean x̄ and θ̂c some prior estimate (say µ0) of this mean. In this type of
situation, a key question is often “How might we combine the two (sample
and collateral) sources of information to get a good estimate of θ, and in
particular how much weight or credibility Z should our estimate put on the
sample estimator θ̂s?” Surely the value of Z should both be an increasing
function of the amount of sample information which we might acquire over
time, and also take account of the relative values of the sample and collateral
information available.

A credibility estimate of θ is a linear combination of the sample estimator
θ̂s and the collateral estimate θ̂c of the form

Z θ̂s + (1− Z) θ̂c (for example Z x̄+ (1− Z)µ0), (5.1)

159
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where Z is the credibility we put on the sample estimator θ̂s. The general
expression given by (5.1) is often called the credibility premium formula. Tra-
ditionally, there has been an emphasis on only using estimates θ̂s of the form∑n

1 ajxj (i.e., linear in the observations) in the credibility premium formula,
and although such estimates have considerable appeal there is no theoretical
reason why other sample estimates cannot be used.

Consider the situation where the annual claims (for theft and malicious
damage) to four rural churches have over the past three years averaged at
24,000, and we are asked to quote a pure premium θ (representing expected
annual claims) to insure them next year. Also available is very extensive
data (both in terms of past years and numbers of buildings) on claims data
from churches in the capital city of the country where the recent average
annual amount of claims per church was 8000. Relying exclusively on (the
directly relevant but somewhat limited) information from the rural churches,
one could estimate θ by 24,000, while using only the collateral information
from the extensive city data one might estimate θ to be 4 · 8000 = 32,000. A
credibility approach would use both sources of information and estimate θ by
some weighted average of the form

Z 24,000 + (1− Z) 32,000.

We shall investigate several approaches to the credibility problem. In the
classical approach to credibility theory, concern centers on establishing when
there is enough data to use Z = 1 (that is, give full credibility to the data), and
if this is not the case how does one determine a reasonable value for Z? This
is basically a frequentist approach to credibility, and is often called either the
limited fluctuation or American approach to credibility theory. Whitney [60]
suggested that the credibility factor Z should be of the form Z = P/(P +K),
where P represents earned premiums and K is to be determined by judgement.

In the Bayesian approach to credibility theory, the credibility estimate is
based on a posterior distribution of θ where the credibility factor Z is the
weight our (Bayesian) posterior estimate puts on the sample information and
1− Z is the weight put on the prior estimate (often the prior mean µ0) of θ.
Another approach which was popularized by Bühlmann [11], and Bühlmann
and Straub [12], is essentially an empirical Bayes approach (and sometimes
called the greatest accuracy or least squares approach to credibility [28]). Here
the data available is used to estimate prior parameters for the model, and then
estimates for θ are determined. Bühlmann [11] suggested using Z = n/(n+K)
as the credibility factor where the Bühlmann credibility parameter K is the
ratio of the mean of the (so-called) process variance to the variance of the
hypothetical means. The Bühlmann and Straub [12] model generalizes this
model to the situation where the exposure units (for example, annual number
of policyholders) may vary with time.
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5.2 Classical credibility theory

In the classical approach to credibility theory, one would ask how much sample
information do I need before I can rely completely on the sample in estimating
the parameter θ of interest? In such a case, one would use Z = 1 and say that
there is full credibility in the sample information (and consequently, that the
collateral information is not necessary in estimating the parameter). When
there is not sufficient sample information for full credibility, the question arises
as to what partial credibility Z one should assign to the sample information
(with the remainder or complimentary 1−Z weighting being assigned to the
collateral information).

This approach to credibility theory is clearly frequentist in nature, and
because of its extensive use in earlier times by American actuaries it is often
called American credibility theory. The classical method of credibility can be
useful in establishing full credibility estimates for claim frequencies and pure
premiums, but some doubt (see, for example, [59]) the basis on which the
concepts of partial credibility are used. Although the classical approach is
infrequently used today, it is of historical interest and raises some interesting
statistical questions.

5.2.1 Full credibility

If θ is the parameter of interest, what does it really mean to say that the
sample data is fully credible? For example, the sample mean x̄ is, after all,
a random variable, and if we are to rely on it as a good estimator of θ we
would hope that with high probability it is relatively close to θ. In most
applications, the parameter of interest θ is either an annual claims rate λ or
a pure premium E(S) representing expected annual aggregated claims. Let k
and 0 < α < 1 be two constants. We say that the estimator θ̂s based on the
sample data x is fully credible (k, α) for θ, if

Prob[ | θ̂s − θ | ≤ kθ ] = Prob[ θ̂s − kθ ≤ θ ≤ θ̂s + kθ ] ≥ 1− α. (5.2)

Usually, k and α are small, with k = 0.05 and α = 0.10 being a common choice
(see [38]). In a situation where there is sufficient data to claim full credibility
(k, α), one can say that with probability 1− α the relative fluctuations of θ̂s

from θ are limited to kθ, and hence this approach to credibility theory is often
called limited fluctuation credibility theory. Some texts use the notation full
credibility (k, p) instead of (k, α) where p = 1−α, and our preference for using
(k, α) stems from the similarity of Equation (5.2) to the classical frequentist
approach to confidence interval estimation of parameters.
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Example 5.1

Aggregate annual claims are modeled by a compound Poisson distribution S
with Poisson parameter λ and typical claim size X. The parameter of interest
is the pure premium θ = E(S) = λE(X). Aggregate annual claims data
S1, . . . , Sr is collected over r years. For given values of (k, α), approximately
how many claims does one need to put full credibility (k, p) on S̄ =

∑
Si/r

as an estimator of E(S)?
S̄ is approximately normal for large rλ, and since V ar(S̄) = λE(X2)/r, it

follows that

P (| S̄ − θ |≤ kθ) = P

(
| S̄ − θ√

λE(X2)/r
| ≤ kθ√

λE(X2)/r

)
.= 2Φ

(
kθ√

λE(X2)/r

)
− 1

≥ 1− α

⇔ rλ ≥
z2
1−α/2

k2

E(X2)
E2(X)

=
z2
1−α/2

k2
[1 + cv2(X)], (5.3)

where Φ(z1−α/2) = 1− α/2 and cv(X) =
√
V ar(X)/E2(X) = σX/µX is the

coefficient of variation of the random claim size X.
Suppose, for example, that (k, α) = (0.10, 0.05) and claims are exponential.

Then E(X2) = 2E2(X) and for full credibility (0.10, 0.05) one should have
at least rλ ≥ (1.96/0.10)2(2) .= 769 claims. In particular, if the annual rate
of claims was of the order of λ .= 160, then one would have full credibility
(0.10, 0.05) for the pure premium after r = 5 years of data. One can say that
in theory the estimator S̄ = (S1 + · · · + S5)/5 differs from θ = E(S) by at
most 0.10E(S) with probability at least 0.95.

Now suppose instead that the parameter of interest is the annual claims
rate λ as opposed to the pure premium E(S) = λE(X). If we want to use the
observed average annual rate N̄ =

∑
Ni/r to estimate λ with full credibility

(k, α), then arguing as above it is clear that one has

P (| N̄ − λ | ≤ kλ) ≥ 1− α ⇔ rλ ≥
z2
1−α/2

k2
. (5.4)

Unless X is constant, one has that E(X2)/E2(X) > 1, and it follows that
one always needs more claims experience to estimate well a pure premium than
a claim rate. This is not surprising since for a pure premium one has to allow
for variability in severity (claim size) as well as variability in frequency (claim
rate). For an exponentially distributed claim the ratio E(X2)/E2(X) = 2,
while for the lognormal distribution (with parameters µ and σ2) it takes the
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value eσ2
. Longley–Cook [38] states that for many types of insurance claims,

2 ≤ E(X2)/E2(X) ≤ 5.

Consider the situation where annual aggregate claims S = X1+. . .+XN are
modeled by a compound distribution but where N is not necessarily Poisson.
Using again a normal approximation for S and arguing as above when r = 1,
it is clear that one can achieve full credibility (k, α) by using S to estimate
θ if E2(S)/V ar(S) ≥ z2

1−α/2/k
2. For example, suppose that S is compound

binomial where the number of claims N is B(m, q). Then E2(S)/V ar(S) =
mqE2(X)/[E(X2) − qE2(X)], and hence full credibility (k, α) for θ = E(S)
is achieved if

mq ≥
z2
1−α/2

k2

[
E(X2)
E2(X)

− q

]
.

In particular, suppose that total claims S for a year result from an exposure
of m units with claim frequency rate q = 0.02 per exposure, and that a
typical claim X is exponential. Then S is a fully credible (k, α) estimate for
E(S) = θ if the expected number of claims mq ≥ (z2

1−α/2/k
2)(1.98). On the

other hand, if the interest is only in the parameter E(N) = mq, then the
expected number of claims necessary for a fully credible (k, α) estimate is
mq ≥ (z2

1−α/2/k
2)(0.98).

5.2.2 Partial credibility

Often one does not have enough data to justify using full credibility to estimate
a parameter, and the question therefore arises as to how much credibility or
weight Z to put on the sample information? The most commonly used method
for assigning partial credibility is the square root rule, whereby the credibility
factor Z is given by

√
n/nF (k,α) where n is the expected (or, in practice, the

observed) number of claims for the data and nF (k,α) is the number required
for full credibility. The justification for this formula is that with this value
of Z one limits the fluctuation (or variance) of Z X̄ around Z θ to that which
would be obtained if the data were fully credible for θ.

Suppose that we want to estimate θ = E(S) = λE(X) for a compound Pois-
son distribution, and that we have r years of aggregate claim data S1, . . . , Sr.
We know from Equation (5.3) that for full credibility (k, α), we need approx-
imately nF (k,α) = (z1−α/2/k)2 [E(X2)/E2(X)] claims. If we do not have this
amount of data, then we will use ZS̄+ (1−Z)µ0 to estimate θ = E(S) where
0 < Z < 1 and µ0 is a collateral estimate of θ. Suppose we decide to use a
value of Z so that Z S̄ as an estimator of Z θ has the same credibility (k, α)
that we would require of full credibility, or in other words that

P (| ZS̄ − Zθ | ≤ kθ) = 1− α.
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Arguing as in Equation (5.3), one sees that this is equivalent to

rλ = Z2
z2
1−α/2E(X2)

k2E2(X)
= Z2 nF (k,α) or Z =

√
rλ

nF (k,α)
.

Example 5.2
Assume that expected total losses for a company last year were 40,000,000,
but in fact the total observed was 47,000,000. This total was based on 12,000
observed claims, while in fact a fully credible estimate of the company’s annual
total losses would require about 18,500 claims. Using the square root rule for
partial credibility, one might estimate total claims for next year (in millions)
by √

12,000
18,500

47 +
(

1−
√

12,000
18,500

)
40 = 45.638.

Historically, some questions have been raised about this (and other similar)
approaches to partial credibility. Note that, for example, in using the above
(square root) approach to determine the partial credibility factor Z, one does
limit in a probabilistic sense the variation between ZX̄ and Zθ. However, this
does not give a probabilistic statement of how reliable Zθ̂s +(1−Z)θ̂c is as an
estimator of θ = Zθ+(1−Z)θ, and in fact the reliability of θ̂c as an estimator
of θ seems to be completely ignored!

5.3 The Bayesian approach to credibility theory

If θ is an unknown characteristic or parameter related to a population or ran-
dom variable, then the frequentist statistician will attempt to make inferences
about θ on the basis of the sample information x. The Bayesian statistician,
however, would always believe that there is additional prior information avail-
able about θ which should be combined with the sample information x in order
to make inferences about θ. The reader might find it useful at this point to
consult the appendix to this book entitled An Introduction to Bayesian Statis-
tics in order to review the Bayesian approach to statistics and the use of loss
functions in estimation.

5.3.1 Bayesian credibility

In the Bayesian approach to credibility theory, one would summarize collateral
knowledge about the unknown parameter θ by means of a prior distribution.
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As such, one is really saying that the unknown parameter can be viewed as
a random variable denoted by Θ. The choice of a prior distribution for Θ is
often a subjective decision. Informative and accurate information is usually
reflected in a prior distribution which is centered near the unknown parameter
and/or is precise (has small variability). Given sample information x, one
would determine the posterior distribution for Θ | x and use this to estimate
the true value of θ (or some function of it). The most common estimator is
the posterior mean (used with quadratic loss), but one may on occasion also
use the posterior median or mode. If µ0 = E(Θ) is the prior mean for Θ, then
in some (but not all) cases one may express the posterior mean E(Θ | X = x)
in the form of credibility estimate for θ, that is, as a linear combination of a
statistic θs (depending on x) and µ0 of the form

E(Θ | X = x) = Z θs + (1− Z) µ0.

The following classic example is useful in estimating expected aggregate claims
when they are normally distributed.

Example 5.3 Normal |Normal model.
In the normal | normal model, we assume that the sampling distribution for
X | θ is N(θ, σ2) where σ2 is known, and that prior information for θ ≡ µ
can be summarized by the normal distribution N(µ0, σ

2
0). With a little bit of

algebra one may show that the sampling distribution for X | θ is

fX|Θ(x | θ) =
n∏

j=1

1√
2πσ

e−(xj−θ)2/2σ2

∝ e−[nθ2−2θ
Pn

j=1 xj ]/2σ2

∝ e−
n

2σ2 (θ−x̄)2 ,

where ∝ means “is proportional to” as a function of θ. Therefore the posterior
for Θ |x is a normal distribution of with density of the form

fΘ|X(θ |x) ∝ e−
n

2σ2 (θ−x̄)2 1√
2πσ0

e
− ( θ−µ0)2

2σ2
0

∝ e−
( θ−θ∗)2

2σ∗2 ,

where

θ∗ =
(
nx̄

σ2
+
µ0

σ2
0

)
/

(
n

σ2
+

1
σ2

0

)
and σ∗ 2 =

(
1

σ2/n
+

1
σ2

0

)−1

(5.5)

are, respectively, the mean and the variance. Hence the credibility estimate
for θ |x may be written as

θ∗ =
σ2

0

σ2
0 + σ2/n

x̄+
σ2/n

σ2
0 + σ2/n

µ0. (5.6)
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with credibility factor

Z =
σ2

0

σ2
0 + σ2/n

=
n/σ2

n/σ2 + 1/σ2
0

=
n

n+ σ2/σ2
0

. (5.7)

It is both reasonable and clear from expression (5.7) that in this model the
credibility factor Z is an increasing function of n for fixed σ2

0 and σ2, and also
an increasing function of σ2

0 for fixed σ2/n = V ar(X̄). Furthermore, Z is a
decreasing function of the ratio K = σ2/σ2

0 (the ratio of the process variance
to the prior variance of the hypothetical means µ) for fixed sample size n.

Note also that the posterior variance is actually the reciprocal of the recip-
rocals of σ2/n (the variance of X̄ which is the maximum likelihood estimator
of θ) and σ2

0 (the variance for the prior). Furthermore, it is easy to see from
(5.5) that

σ∗2 ≤ min(σ2/n, σ2
0),

and hence as one might expect the posterior distribution is less variable than
the prior as a distribution for θ. Since σ∗2 ≤ σ2/n, the variance of the
posterior can be made as small as desirable by taking a large enough sample
size n.

Example 5.4
In past years a lognormal distribution has been used to model the claim size
X in a portfolio of household contents policies. If Y = logX, then up to now
in the company one has assumed that Y ∼ N(6.9, σ2 = 0.12). Changes have
been recently made in the procedure for making claims, and as a result it is
expected that the mean µ for Y in the future will be reduced, but that σ2 will
stay approximately the same. Initial feelings about the new value for µ are
that it will be approximately 6.4, and that with 90% certainty it is within the
interval [6.35, 6.45]. If a random sample of 40 new claims yields ȳ = 6.51, what
is the Bayes estimator (with quadratic loss) for µ? What would be the Bayes
estimate for E(Y ) if an absolute value loss function were used? What sample
size (of claims) would be necessary in order to obtain a posterior distribution
for µ with a standard deviation ≤ 0.01?

We assume a normal prior for µ and since

0.9 = P (6.4− 1.645σ0 ≤ µ ≤ 6.4 + 1.645σ0),

it follows that σ0 = 0.05/1.645 = 0.0304. Thus the prior distribution for µ
is N(µ0 = 6.4, σ2

0 = 0.03042). The posterior will also be normal with mean
given by

σ2
0

σ2
0 + σ2/n

ȳ +
σ2/n

σ2
0 + σ2/n

µ0 =
0.03042

0.03042 + 0.12/40
6.51

+
0.12/40

0.03042 + 0.12/40
6.4
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= 0.7870 (6.51) + 0.2130 (6.4) = 6.4866.

To obtain a posterior with standard deviation ≤ 0.01 in this situation, we
need a sample of size n such that(

1
0.12/n

+
1

0.03042

)−1/2

≤ 0.01,

or equivalently, that n ≥ 90.

Example 5.5 Poisson |Gamma model.
The Poisson model is frequently used to model claim incidence. Let us sup-
pose that annual claim numbers on a portfolio of policies are modeled by a
Poisson distribution with parameter λ, and that prior information about λ
may be summarized by a gamma distribution Γ(α, β). (We might view λ as
the realization of a random variable Λ ∼ Γ(α, β).) After collecting sample
information about claim numbers x = (x1, . . . , xn) over n years where xj is
the number of claims from year j, the posterior density for λ takes the form

fΛ|X(λ | x) ∝
∏n

j=1 λ
xje−λ∏n

j=1 xj !
βαλα−1e−βλ

Γ(α)

∝ λ
P

xj+α−1 e−λ(n+β).

Therefore the posterior distribution for λ | x is the gamma distribution
Γ(
∑
xj + α, n + β), and the posterior mean (Bayesian estimator of λ with

quadratic loss) can be expressed as a credibility estimate in the form

E(Λ |x) =
∑
xj + α

n+ β

=
n

n+ β

∑
xj

n
+

β

β + n

α

β

= Z x̄ + (1− Z)µ0.

The credibility we put on the data itself is Z = n/(n + β), and µ0 = α/β is
the prior mean. Note that for a fixed prior distribution on λ, the credibility
factor Z = n/(n+ β) is an increasing function of the number of years of data
observed, and moreover

β =
α/β

α/β2
=

E[Λ]
V ar[Λ]

=
E[V (X | Λ)]
V ar[E(X | Λ)]

≡ K.

For example, suppose that the Γ(3, 1) distribution is used as a prior for the
annual claims rate λ, and that the numbers of annual claims observed in a
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5-year period are given by x = (2, 3, 6, 0, 3). Then the posterior distribution
for λ |x is Γ(14 + 3, 5 + 1) = Γ(17, 6) and a credibility estimate for λ is

17
6

=
5
6

14
5

+
1
6

3
1
.

Example 5.6
Suppose that the annual number of claims resulting from water damage in
a small city is a Poisson random variable with λ = 160, but that this is not
actually known. Instead, an initial feeling about the possible values for λ is
expressed by a Γ(120, 1) distribution, which clearly underestimates the reality
of the situation. After n years of data have been collected (n = 1, . . . , 12),
the credibility estimate (posterior mean) for λ can be expressed as∑n

1 xj + α

n+ β
=
∑n

1 xj + 120
n+ 1

=
n

n+ 1
x̄+

1
n+ 1

120
1
,

where the credibility factor Z = n/(n + 1) converges rather quickly to 1.
In this instance, this is crucial since the prior information on λ gives little
credence to values as large as the actual value 160. Note, however, that had
one used a more precise prior for λ with the same mean, then convergence
of the credibility factor to 1 would be slower. For example, if the prior were
the Γ(960, 8) distribution with the same mean of 120, then the corresponding
credibility factor after observing n years of data would be n/(n+8) < n/(n+
1).

A sample of actual claims arising over 12 successive years is given in Table
5.1, together with the corresponding credibility estimates for the two different
prior distributions for λ. In Figure 5.1, these estimates are plotted over years
to illustrate different rates of convergence to the true value of 160.

TABLE 5.1

Annual water damage claims and credibility estimates.
Year 1 2 3 4 5 6 7 8 9 10 11 12

Claims 156 150 157 150 167 134 157 157 155 156 161 178

Prior Credibility estimates
Γ(120, 1) 138 142 146 147 150 148 149 150 150 151 152 154
Γ(960, 8) 124 127 129 131 134 134 135 137 138 139 140 142

In the Poisson | gamma model for claim numbers, we have assumed our
knowledge about the unknown parameter (annual claim rate) λ is summarized
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FIGURE 5.1
Posterior estimates for λ (claim rate on water damage) with different priors.

by a Γ(α, β) distribution. If we let X = (X1, . . . , Xn) represent the numbers
of claims to be observed in n subsequent years, then we should be careful
to distinguish between the theoretical distributions of X with and without
knowledge of λ.

Given a particular value of λ, we assume that the random variables (X1 |
λ, . . . ,Xn | λ) are independent identically distributed Poisson random vari-
ables with parameter λ. Furthermore, Xn+1 | λ is Poisson with mean λ,
and our posterior Bayesian estimate of its mean (having actually observed
x = (x1, . . . , xn)) is E(Xn+1 | x) = (α +

∑n
1 xj)/(n + β). However, if we

do not know the value of λ (but assume that our prior feeling about its pos-
sibilities are summarized by a Γ(α, β) distribution), then the components of
X = (X1, . . . , Xn) are neither Poisson nor independent (although they are
identically distributed). In fact, we can essentially view any Xj as a Γ(α, β)
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mixture of Poisson random variables since

P (Xj ≤ k) =
∫ ∞

0

P [Xj ≤ k | Λ = λ] fΛ(λ) dλ

=
∫ ∞

0

k∑
i=0

λie−λ

i!
βαλα−1e−λβ

Γ(β)
dλ .

Once we condition on (or assume a value for) λ, the observations in X are
independent. However, before conditioning, for any i 6= j,

E(XiXj) = EΛ(E(XiXj | λ)) = EΛ[E(Xi | λ) E(Xj | λ)]

= EΛ(λ2) =
α

β2
+
(
α

β

)2

6=
(
α

β

)2

= E(Xi)E(Xj),

and hence in particular the components of X are dependent!

5.4 Greatest accuracy credibility theory

One of the most useful situations for a theory of credibility arises when there
are n years of claims experience X = (X1, . . . , Xn), and one is interested in
Xn+1 (the number or aggregate amount of claims that will be observed next
year). In most cases, this will be done by estimating its conditional mean (or
what might be termed the pure premium) given X = x.

Let us assume that there is some unknown risk parameter θ determining the
distribution of our observations. Even if we feel we have very little informa-
tion about θ, the Bayesian statistician (and there are many such people who
can argue their case very strongly) would always say that we can (by asking
ourselves and learning from the experience of so-called experts) always con-
struct a prior distribution for this parameter! Such prior information allows
us to view the true risk parameter as (the realization of) a random variable
Θ. The parameter θ might be something as straightforward as a mean, but it
might also be a more complex indicator of the type of insurance (say personal
liability) and/or characteristics of the group insured (say middle aged drivers
of large vehicles).

In the most basic claims model of this type, we assume that the yearly
observations of (X1, . . . , Xn) which we make are of equal value in making
inferences about the mean of Xn+1. In particular, we assume that conditional
on knowing that Θ = θ, the random observations Xj | θ, j = 1, . . . , n+ 1 are
independent and identically distributed. We shall usem(θ) to denote the mean
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of any of these observations given knowledge of θ, that is, m(θ) = E(Xj | θ)
for j = 1, . . . , n + 1. In this context, having observed X = x, it is actually
m(θ) = E(Xn+1) which is usually of more interest than θ itself (although in
some of the more classic situations like the normal |normal or Poisson |gamma
models, m(θ) is actually equal to θ).

Given the risk parameter θ, there will be variation in the observations
X1, . . . , Xn+1 which we denote by s2(θ), that is, V ar(Xj | θ) ≡ s2(θ). Note
that in this basic model both m(θ) = E(Xj | θ) and s2(θ) = V ar(Xj | θ) are
independent of j = 1, . . . , n, n+ 1.

Of course, as a function of the unknown risk parameter Θ = θ, the mean
m(θ) varies between risks and hence can be viewed as a random variable
m(Θ). The mean and variance of m(Θ) will be denoted, respectively, by
E[m(Θ)] and V ar[m(Θ)] (remember the Bayesian always believes there exists
a prior distribution for m(θ), even if it is not one of the more classic ones).
Furthermore, the annual within risk variation s2(θ) for Xj | θ can be viewed
as a random quantity (with respect to Θ), and its mean value will be denoted
by E[s2(Θ)].

It is very important to realize that although for a given Θ = θ the random
variables X1 | θ, . . . ,Xn+1 | θ are independent, the (unconditional) random
variables Xj , j = 1, . . . , n + 1 are not (although they are identically dis-
tributed). In fact, one might view the observation of the data X = x as a
two-step random operation. In the first step, a selection of the risk parameter
Θ = θ takes place, and in the second the n values (X1 = x1, . . . , Xn = xn |
Θ = θ) are made conditional on a value for Θ = θ. The following basic prop-
erties will be useful (established using the classic double expectation theorem)
in estimating E(Xn+1 | X), E[m(Θ) | X], or Xn+1:

E(Xj) = EΘ[E(Xj | θ)] = E[m(Θ)] , (5.8)

E(XiXj) = EΘ(XiXj | θ)) = EΘ[E(Xi | θ) E(Xj | θ) ]
= E[m2(Θ)] for i 6= j and (5.9)

E(X2
j ) = EΘ[E(X2

j | θ)] = EΘ[s2(θ) +m2(θ)]

= E[s2(Θ)] + E[m2(Θ)] . (5.10)

Observing sample information X = x = (x1, . . . , xn) allows us to update
our information on θ, giving rise to a posterior distribution for θ which we will
conveniently denote with its distribution function FΘ|X. The pure premium
is the expected value of Xn+1 with the updated information FΘ|X on θ, and
this can be expressed in equivalent ways as

E(Xn+1 | X = x) = EΘ|X [E(Xn+1 | Θ = θ,X = x)]

=
∫
m(θ)fΘ|X(θ | x) dθ
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=
∫ [∫

xfX|Θ(x | θ) dx
]
fΘ|X(θ | x) dθ

= E[m(Θ) | X = x],

and hence is the posterior mean of m(Θ) given X = x.
We shall use EΘ|X[m(Θ)] to denote the random variable which on observing

X = x takes the value E[m(Θ) | X = x]. Bühlmann [11] states that experience
rating is “a sequence of estimates for E[m(Θ)] based on the observations of
X1, . . . , Xn.”

5.4.1 Bayes and linear estimates of the posterior mean

In some cases, the posterior mean (or Bayes estimate when using quadratic
loss) E[m(Θ) |X = x] is conveniently expressible as a linear function of the
sample observations x and what one might call the prior mean µ0 = E[m(Θ)].
For example, in the basic normal |normal model of Example 5.3, m(θ) = θ and
hence the pure premium E(Xn+1 | X = x) = E(Θ | X = x) can be expressed
as a linear function of the observations x given by (see Equation (5.6) )

E(Xn+1 | X = x) =
σ2

0

σ2
0 + σ2/n

x̄+
σ2/n

σ2
0 + σ2/n

µ0.

In the Poisson | gamma model for the number of annual claims, the pure
premium takes the form

E(Xn+1 | X = x) = E(Λ | X = x)

=
n

n+ β

∑
xj

n
+

β

n+ β

α

β

= Z x̄+ (1− Z) µ0.

In other situations of interest, however, the posterior distribution for m(Θ)
may be difficult to determine, and the posterior mean E(m(Θ) | X = x) may
not be conveniently expressible as a linear combination of the observations
x and µ0. This led Hans Bühlmann [11] to develop an elegant model for
credibility theory where the credibility formula is a linear combination of the
observations in the sample data X = (X1, . . . , Xn). His stated objective was
to find the linear coefficients a0, a1, . . . , an which minimize E(Xn+1 − [a0 +∑n

1 ajXj ])2 with respect to the posterior distribution of Θ | X. One may
show that this is equivalent to minimizing either

E(E[m(Θ) | X]− [a0 +
n∑
1

ajXj ])2 or E(m(Θ)− [a0 +
n∑
1

ajXj ])2.

In what follows we give some insight into how one can determine (optimal)
values for a0, a1, . . . , an in order to minimize

E(Xn+1 − [a0 +
n∑

j=1

ajXj ] )2. (5.11)
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Remember that the random observations Xj | θ, j = 1, . . . , n + 1 are in-
dependent and identically distributed. We will therefore make the reasonable
assumption (which may be justified) that in minimizing (5.11), we may re-
strict consideration to the case where ai = a for all i = 1, . . . , n. Hence we
want to find a0 and a which minimize E(Xn+1 − [a0 + a

∑n
1 Xj ] )2. The

following technical result is both insightful and of considerable use.

THEOREM 5.1

E(Xn+1 − [a0 + a
n∑

j=1

Xj ] )2 = (na2 + 1)E[s2(Θ)] + E[(na− 1)m(Θ) + a0]2.

(5.12)

PROOF Conditioning on Θ = θ,

E

[Xn+1 − a0 − a
n∑

j=1

Xj ]2 | θ


= E( [Xn+1 −m(θ)]2 | θ) + E( [m(θ)− a0 − a

n∑
j=1

Xj ]2 | θ)

{since E( [Xn+1 −m(θ)] [m(θ)− a0 − a

n∑
j=1

Xj ] | θ) = 0}

= s2(θ) + E( [−(na− 1)m(θ)− a0 − a
n∑

j=1

[Xj −m(θ)] ]2 | θ)

= s2(θ) + a2
n∑

j=1

E( [Xj −m(θ)]2 | θ) + [(na− 1)m(θ) + a0]2

= (na2 + 1) s2(θ) + [(na− 1)m(θ) + a0]2.

Theorem 5.1 follows on taking expectation with respect to Θ.

Note that the first term on the right-hand side of the expression (5.12) does
not involve a0, and thus E(Xn+1 − [a0 + a

∑n
1 Xj ] )2 is clearly minimized if

a0 = −(na− 1)E[m(Θ)]. Finding the optimal value for a therefore reduces to
minimizing

(na2 + 1)E[s2(Θ)] + (na− 1)2E(m(Θ)− E[m(Θ)])2

= (na2 + 1)E[s2(Θ)] + (na− 1)2 V ar[m(Θ)],
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and therefore the optimal value for a is

a =
1

n+K
=

1
n+ E[s2(Θ)]/V ar[m(Θ)]

,

where K = E[s2(Θ)]/V ar[m(Θ)]. Since s2(θ) is the random variation (or
variance) of Xj | θ, the numerator in the expression for K is the average
value of this variation with respect to the prior distribution of Θ, and hence
is often called the expected value of the process variance. Analogously, the
denominator is called the variance of the hypothetical means.

In summary, the best (in terms of minimizing mean square deviation) linear
estimator of Xn+1 of the form a0 +

∑n
1 ajXj , is given by

E(Xn+1 | X = x) =
n∑

j=1

1
n+ E[s2(Θ)]/V ar[m(Θ)]

Xj

+
(

1− n

n+ E[s2(Θ)]/V ar[m(Θ)]

)
E[m(Θ)]

=
n

n+ E[s2(Θ)]/V ar[m(Θ)]
X̄

+
(

1− n

n+ E[s2(Θ)]/V ar[m(Θ)]

)
E[m(Θ)]

= Z X̄ + (1− Z) E[m(Θ)] ,

where Z = n/(n+K).
Credibility estimators of this form are often called Bühlmann credibility es-

timators, and this approach to credibility theory is sometimes called Greatest
Accuracy Credibility Theory. Jewell [30] provides a good analysis of Bühlmann
credibility estimators and Bayesian estimators. Note that the Bühlmann cred-
ibility factor Z = n/(n+K) approaches 1 as the sample size n increases. It is
also a decreasing function of E[s2(Θ)], that is, the larger the average volatil-
ity (or process variance) of observations between different risk parameters is,
the less weight we put on the sample mean X̄. On the other hand, it is an
increasing function of V ar[m(Θ)] since the larger the variation is between the
hypothetical means m(θ), the more weight we put on our actual sample data.

Example 5.7
Small companies in an industrial estate are insured for fire and theft. Prior
claims experience with such companies has led to modeling annual aggregate
claims by compound Poisson distributions. Generally speaking, companies
are divided into two types, where the different assumptions made on the
compound Poisson distributions are given in Table 5.2. Approximately 60%
of companies are classified as type θ1. The claims experience over the past
three years from a relatively new company is given by

S = (S1, S2, S3) = (0, 591 + 790, 740 + 846).
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Here, for example, in year 3 there were 2 claims of respective sizes 740 and
846. Given this information, what would you quote as a pure premium (for
next year) for this company?

TABLE 5.2

Risk groups for fire and theft insurance.
Company type θ Prior on θ Poisson rate λ Claim Xj

θ1 0.6 1 X1 ∼ Pareto (3,1200)
θ2 0.4 1.5 X2 ∼ Pareto (3,1600)

The pure premium of interest is E(S4 | S = s), and although we do not know
which type of company this came from, our information (s1, s2, s3) allows us
to update the prior information. Now m(θ1) = E(S | θ1) = 1 ·(1200/2) = 600,
and similarly m(θ2) = 1200. Therefore the prior mean of m(Θ) is

µ0 = E[m(Θ)] = 600 (0.6) + 1200 (0.4) = 840.

Now
s2(θ1) = λ1E(X2

1 ) = 1[6002 + 6002(3)] = 4[600]2,

and similarly, s2(θ2) = 6[800]2. It follows that E[s2(Θ)] = 2,400,000. Finally,

V ar[m(Θ)] = 6002 (0.6) + 12002 (0.4)− 8402 = 86,400 ,

and hence the factorK = 2,400,000/86,400 = 27.7778. This gives a Bühlmann
credibility factor of Z = 3/(3 +K) = 0.0975. Therefore the pure premium is
estimated as

E(S4 | s) = (0.0975) s̄ + (1− 0.0975) µ0

= (0.0975) 989 + (0.9025) 840
= 854.52.

5.4.2 Predictive distribution for Xn+1

The distribution of Xn+1 given the posterior distribution Θ | X is useful
for making predictions about the next claims value, and hence is called the
predictive distribution. This is actually a mixture distribution of X | θ with
respect to Θ | X, and is given by

fXn+1(x) =
∫
fX|Θ(x | θ)fΘ|X(θ | x) dθ.

峥 周
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Example 5.8 Poisson |Gamma model.
Let X |λ be Poisson with mean λ, where prior information about λ is given
by a Γ(α, β) distribution. On observing numbers of claims X = (x1, . . . , xn)
over n years, the predictive distribution for Xn+1 (the random number of
claims which will be made next year) is the negative binomial distribution
NB(r =

∑
xj +α, p = (n+β)/(n+β+1)). If

∑
xj +α is an integer, then the

probability that there will be k claims next year is the same as the probability
that it will take

∑
xj + α + k Bernoulli trials to observe the (

∑
xj + α)th

success, where the probability of success is p = (n+ β)/(n+ β + 1). Hence

P [Xn+1 = k] =
∫ ∞

0

P [Xn+1 = k | λ] fΛ|X(λ | x) dλ

=
∫ ∞

0

λke−λ

k!
(n+ β)

P
xj+α λ

P
xj+α−1 e−λ(n+β)

Γ(
∑
xj + α)

dλ

=
1

Γ(
∑
xj + α) Γ(k + 1)

·

(n+ β)
P

xj+α

(n+ β + 1)
P

xj+α+k

∫ ∞

0

w
P

xj+α+k−1 e−w dw

=
Γ(
∑
xj + α+ k)

Γ(
∑
xj + α) Γ(k + 1)

(
n+ β

n+ β + 1

)P
xj+α (

1
n+ β + 1

)k

In particular, continuing with Example 5.5, it follows that

P [X6 = 4] =
Γ(14 + 3 + 4)

Γ(14 + 3) Γ(4 + 1)

(
5 + 1

5 + 1 + 1

)14+3( 1
5 + 1 + 1

)4

= 0.1468.

5.5 Empirical Bayes approach to credibility theory

Bühlmann or greatest accuracy credibility estimates for pure premiums are
theoretically appealing, but in practice it may be difficult to actually de-
termine the prior quantities E[m(Θ)], V ar[m(Θ)] and E[s2(Θ)] necessary to
calculate these estimates. In the (nonparametric) empirical Bayes approach
to credibility theory, the data itself is used to estimate these quantities.

In this section we will discuss two models where one possesses knowledge
and data on N risks over n years, with the objective of estimating a pure
premium for the next year for one or all of the risks. Model 1 is the simpler
of the two models; however, it is more restrictive than Model 2 in that it does
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not account for the varying annual volume of business that may contribute
to the observed amount or number of claims. We denote the unknown risk
parameter by θ, while m(θ) will be the quantity of interest. This quantity may
be θ itself, but there are many other possibilities like standardized versions
of pure premiums or claim rates. In Model 1 we use the available data to
estimate the quantities E[m(Θ)], V ar[m(Θ)] and E[s2(Θ)], and hence obtain
a Bühlmann-type credibility estimate for a particular risk. In Model 2 we
follow the approach of Bühlmann and Straub [12] allowing for varying annual
volumes in the risks, and then after standardizing annual aggregate claims
by these volumes, we obtain empirically based credibility estimates for pure
premiums.

5.5.1 Empirical Bayes credibility – Model 1

The data (random observations) are of the form {{Xij}N
i=1}n

j=1, where Xij

represents the aggregate claims in the jth year from the ith risk. Assume
that there is an unknown risk parameter θi for the ith risk, which for i =
1, . . . , N represents a realization from a random variable Θ. We denote by
m(θi) and s2(θi), respectively, the mean and variance of Xij | θi for j =
1, . . . , n. Although we assume that Xij | θi for j = 1, . . . , n are independent
and identically distributed for any given risk i, the (unconditional) random
variables Xij , j = 1, . . . , n are not necessarily independent, even though they
are identically distributed.

We do not assume any particular form for the distribution of the random
variable m(Θ), but we shall denote its mean and variance by E[m(Θ)] and
V ar[m(Θ)], respectively. The mean value of the variability within a risk, or
the expected value of the process variance, is denoted by E[s2(Θ)]. As we have
already noted, in the normal | normal model, m(θ) = θ, s2(θ) = σ2 (which is
constant in θ), E[m(Θ)] = µ0, V ar[m(Θ)] = σ2

0 and E[s2(Θ)] = σ2.
From the previous section, it follows that the greatest accuracy credibility

estimate of the pure premium for risk i (the predicted mean aggregate claim
amount E(Xi,n+1 | X = x) for next year in risk i) given the data takes the
form

n

n+ E[s2(Θ)]/V ar[m(Θ)]
X̄i +

(
1− n

n+ E[s2(Θ)]/V ar[m(Θ)]

)
E[m(Θ)].

In the empirical Bayes approach to credibility theory, one actually uses the
data to estimate the three parameters E[m(Θ)], E[s2(Θ)] and V ar[m(Θ)].
Letting Xij represent the aggregate claims in the jth year from the ith risk,
X̄i =

∑n
j=1Xij/n and X̄ =

∑N
i=1 X̄i/N , one may show that the estimators

given in Table 5.3 are unbiased.
The estimators for E[m(Θ)] and E[s2(Θ)] are intuitively what one might

expect (that for E[s2(Θ)] is simply the average of the sample variances in each
risk). Naively, one might initially expect that

∑N
i=1(X̄i− X̄)2/(N − 1) would
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TABLE 5.3

Model 1: Unbiased estimators for E[m(Θ)], E[s2(Θ)] and V ar[m(Θ)].
Estimator

̂E[m[Θ)] = X̄
̂E[s2(Θ)] =

PN
i=1

Pn
j=1(Xij − X̄i)

2/(N (n− 1))

̂V ar[m(Θ)] =
PN

i=1(X̄i − X̄)2/(N − 1)−
PN

i=1

Pn
j=1(Xij − X̄i)

2/(n N(n− 1))

be a good estimator for V ar[m(Θ)], but a correction factor (namely, ̂E[s2(Θ)]
divided by n) is needed to make it unbiased.

Example 5.9
Table 5.4 gives data on aggregate motor claims ($000′s) in each of three
regions of a country for a national insurer over five years.

TABLE 5.4

Aggregate motor claims over five years.
Year

Region 1 2 3 4 5
1 5,841 7,782 5,373 7,020 7,773
2 5,910 4,491 6,102 5,373 6,651
3 7,011 8,045 7,078 7,266 9,027

Using Model 1 of Empirical Bayes credibility we calculate the credibility
factor and credibility premium for next year for each of the three regions. For
each of the regions we calculate (sample) means and variances, yielding

(X̄1, X̄2, X̄3) = (6,757.8, 5,705.4, 7,685.4), and
(s2(θ1), s2(θ2), s2(θ3)) = (1,226,639.7, 669,642.3, 732,212.3).

Hence we estimate E[m(Θ)] and E[s2(Θ)] by 6,716.2 and 876,164.8, respec-
tively. Since the sample variance of (X̄1, X̄2, X̄3) = (990.6553)2, it follows that
V ar[m(Θ)] is estimated by (990.6553)2 − 876,164.8/5 = 806,165. Therefore
the credibility factor (which is the same for each region) is

Z =
n

n+ ̂E[s2(Θ)]/ ̂V ar[m(Θ)]
= 5/(5 + 1.0868) = 0.8214.

The credibility premium for region 1 is therefore

Z X̄1 + (1− Z) (6716.2) = 0.8214 (6757.8) + 0.1786 (6716.2) = 6,750.37,

and similarly, those for regions 2 and 3 are, respectively, 5,885.88 and 7,512.35.
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Example 5.10

A general insurance company has four separate groups of policyholders for res-
idential household contents insurance. Total claim amounts for five successive
years have been calculated for each of the separate groups, and the figures in
Table 5.5 have been adjusted to take account of inflation. The objective is to
estimate the pure premium for group A for the following year. Two methods
(empirical Bayes and Bayes) are being proposed by two different analysts.

TABLE 5.5

Aggregate claims for 5 groups.
Year → 1 2 3 4 5

Group A 58 42 98 130 64
Group B 204 186 246 222 186
Group C 183 153 215 171 147
Group D 78 104 77 116 118

Analyst 1 would like to estimate the pure premium for Group A using
empirical Bayes credibility theory. Analyst 2 does not feel information from
Groups B, C and D is relevant and decides to ignore it completely. She does,
however, feel that she has prior information for the pure premium m(θA)
which is N(90, 102), and she also feels that the five years of data from Group
A can be viewed as a random sample from an N(θA, 352) distribution.

Let us denote by m(θ̂1A) and m(θ̂2A) the respective estimates of m(θA) for
Analysts 1 and 2. Summary statistics on aggregate claims for each of four
risks over five years are given in Table 5.6. Here Xij denotes aggregate claims
in year j for risk i. These give estimates as follows:

TABLE 5.6

Summary statistics on aggregate claims.

Risk Xi

∑5
j=1(Xij −Xi)2/4

A 78.4 1248.8
B 208.8 655.2
C 173.8 735.2
D 98.6 399.8

̂E[m(Θ)] = 139.9,
̂E[s2(Θ)] = 759.7, and

̂V ar[m(Θ)] =
∑

(X̄i − X̄)2/3− E[s2(Θ)]/5
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= (61.6018)2 − 151.9487 = 3,642.83.

Hence
Z =

5

5 + ̂E[s2(Θ)]/ ̂V ar[m(Θ)]
=

5
5 + 0.2086

.= 0.96.

Therefore the pure premium for Analyst 1 is estimated to be

m(θ̂1A) = 0.96 (78.4) + 0.04 (139.9) = 75.26 + 5.60 = 80.86.

The posterior distribution for Analyst 2 is

N

(
(5/352)78.4 + 90/102

5/352 + 1/102
= 86.64,

(
1

352/5
+

1
102

)−1
)
,

and hence her estimate is m(θ̂2A) = 86.64.

5.5.2 Empirical Bayes credibility – Model 2

In many practical situations one has not only information on annual aggregate
claims, but also on other relevant information like premium income or number
of policies. The data might be given as in Table 5.7.

TABLE 5.7

Year 1 2 , , , n
Aggregate claims Y1 Y2 , , , Yn

Volume of business P1 P2 , , , Pn

Usually, Pj will denote a volume or amount of business for the jth year, and
knowing Pn+1 one would like to estimate aggregate claims Yn+1 for next year.
Let us define the random variableXj = Yj/Pj for j = 1, . . . , n, n+1, where the
risk parameter is θ. E(Xj | θ) = m(θ) may be viewed (or interpreted) as the
average amount of claims per unit of risk. One might then estimate m(θ) with
m̂(θ), and then predict Yn+1 by Pn+1 m̂(θ). Our motivation for introducing
Xj (instead of using just Yj) is to obtain some form of standardized measure
of claim size when the amount of business Pj varies in different years.

Somewhat similar to our assumptions in Model 1, we shall assume in Model
2 that given the risk parameter θ for a company, then X1, . . . , Xn, Xn+1 are
independent random variables – however they are not necessarily identically
distributed as they were in Model 1. We do assume, however, that they have
the same mean (essentially, that the average size of a claim per unit of risk
is the same in each year), and this is denoted by m(θ) = E(Xj | θ). We
also assume that s2(θ) = Pj V ar(Xj | θ) is independent of j, and hence that
V ar(Xj | θ) = s2(θ)/Pj only varies from year to year because of the varying
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volume of business. In Model 1 the annual aggregate claim amounts with risk
factor θ are treated equally in estimating E[m(θ) | Y], while in Model 2 we
weight the aggregate claims by the (reciprocal of the) amount of business they
represent.

In practice, there will be an unknown value of m(θ) for a particular com-
pany, but there will also be collateral information on other companies. We
will use both sources of information to estimate m(θ) for a given risk factor
θ. Generally speaking, we shall have data on N risks over n years, where
the data is of the form {{Yij} N

i=1}n
j=1, {{Pij} N

i=1}n
j=1. Here Yij represents the

aggregate claims in the jth year from the ith risk (or company) and Pij is the
corresponding risk volume. We use the following notation:

P̄i =
n∑

j=1

Pij , P̄ =
N∑

i=1

P̄i

P ∗ = (Nn− 1)−1
N∑

i=1

P̄i(1− P̄i/P̄ )

Xij = Yij/Pij , X̄i =
n∑

j=1

PijXij/P̄i and X̄ =
N∑

i=1

n∑
j=1

PijXij/P̄ .

The best (Bühlmann and Straub [12]) linear estimator for next year’s total
(as well as expected) aggregate claims Yi n+1 for company (or risk) i is of the
form Pi,n+1 Xi n+1, where Xi n+1 is estimated by(

Zi X̄i + (1− Zi)E[m(Θ)]
)

=∑
j Pij∑

j Pij + E[s2(Θ)]/V ar[m(Θ)]
X̄i +

E[s2(Θ)]/V ar[m(Θ)]∑
j Pij + E[s2(Θ)]/V ar[m(Θ)]

E[m(Θ)].

Note that the credibility factors Zi would be the same for all risks if the total
volumes of business (

∑
j Pij) were the same for all risks. As in Model 1, we

need estimates of the parameters E[m(Θ)], E[s2(Θ)], V ar[m(Θ)], and in the
empirical Bayes approach unbiased estimators based on the data obtained are
given in Table 5.8.

Example 5.11
The data in Table 5.9 was collected on aggregate claims resulting from smoke
damage ($000′s) for three risks over the years 2002− 2006. Here Yij denotes
total claims for risk i in the jth year. Using Model 1 of empirical Bayes
credibility, we calculate the credibility factor and premium for next year for
each of these risks. Now

Ê[m(θ)] = 5,512 ,

Ê[s2(θ)] = (891,136 + 272,484 + 320,356)/12 = 123,664.67 and
̂V ar[m(θ)] = 3,823,804− (123,664.67)/5 = 3,799,071.2.
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TABLE 5.8

Model 2: Unbiased estimators for E[m(Θ)], E[s2(Θ)] and V ar[m(Θ)].
Estimator

̂E[m(Θ)] = X̄
̂E[s2(Θ)] = N−1

∑N
i=1(n− 1)−1

∑n
j=1 Pij(Xij − X̄i)2

̂V ar[m(Θ)] = P ∗−1((Nn− 1)−1
∑N

i=1

∑n
j=1 Pij(X̄ij − X̄)2

−N−1
∑N

i=1(n− 1)−1
∑n

j=1 Pij(Xij − X̄i)2 )

TABLE 5.9

Aggregate claims from smoke damage.

Year 2002 2003 2004 2005 2006 Y i

5∑
1

(Yij − Y i)2

Risk i
1 4,560 4,825 4,965 5,325 5,775 5,090 891,136
2 3,425 3,700 3,825 3,940 4,120 3,802 272,484
3 7,200 7,540 7,760 7,810 7,910 7,644 320,356

Hence the credibility factor Z takes the form

Z =
n

n+K
=

5
5 + (123, 664.67/3, 799, 071.2)

= 0.9935.

Note that in using Model 1 here, we have almost full credibility (Z = 0.9935)
in the data from any particular risk. This is essentially due to the very
small estimate for K = E[s2(Θ)]/V ar[m(Θ)] of 0.03255 (since the variance
V ar[m(Θ)] between the hypothetical means is so much more than the mean
E[s2(Θ)] of the process variance). The risk premiums for risks 1, 2 and 3 are
therefore, respectively, 5,092.74, 3,813.12 and 7,630.14. Note that they are
all very close to the values Ȳ1, Ȳ2 and Ȳ3.

Now suppose that we also have a measure of risk volume Pij corresponding
to each Yij above. Suppose also that by using Model 2 for empirical Bayes
credibility, the credibility premium per unit of risk volume for next year for
risk 1 has already been calculated to be 7.10. What would the corresponding
credibility premiums be for risks 2 and 3? Some summary statistics for the
risk volumes are:

Risk i
∑5

j=1 Pij

1 3,760
2 2,448
3 4,624

We have that X̄ =
∑

5Ȳi/
∑
Pij = 7.6329. Therefore

7.10 = Z1 (6.7686) + (1− Z1) (7.6329) ⇒ Z1 = 0.5329/0.8643 = 0.6166.
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Hence

0.6166 =
3760

3760 + Ê[s2(θ)]/ ̂V ar[m(Θ)]
⇒ Ê[s2(θ)]/ ̂V ar[m(Θ)] = 2337.98.

Therefore, Z2 = 0.5115, and the credibility premium per unit risk for risk 2
is estimated to be

0.5115 (5) (3802/2448) + 0.4885 (7.6329) = 7.70.

Similarly for risk 3, Z3 = 0.6642 with risk premium 8.05.

5.6 Problems

1. Aggregate annual claims are modeled by a compound Poisson distribu-
tion where a typical claim is Pareto with mean 600 and variance 720,000.
For the past few years the annual claim rate λ has been of the order of
800. How many years of claims experience r would be necessary to en-
sure that | S̄ −E(S) |≤ 0.05E(S) with probability at least 0.98? If the
parameter of interest was actually only the annual claim rate, how many
years r would be necessary to estimate λ with full credibility (0.05, 0.01)
when using the average annual claim rate?

2. In Chapter 2 on loss distributions (Example 2.3), a lognormal distri-
bution with parameters µ̃ = 8.74927 and σ̃2 = 0.36353 was fitted to
data on automobile damage claims in ($000′s) during the year 2002 for
a fleet of rental cars. If the annual aggregate claims S are modeled by a
compound Poisson distribution with λ = 500, how many years r of data
do we need to be able to say that S̄ will be a fully credible (0.10, 0.05)
estimator of E(S)?

3. A group of individuals with similar age have a mortality rate of 0.02 per
annum (based on previous experience). It is desired to quote an annual
pure premium for a group policy for these individuals on three bases:

(a) Each life is insured for $16,000.
(b) Each life is insured for one year’s salary, and the distribution of

salary is approximately N(16,000, (1000
√

3)2).
(c) Each life is insured for an amount determined by both salary and

experience. It is reasonable to assume that this variable is dis-
tributed uniformly on [13,000, 19,000] for the group.

How many lives would you require in each of the above situations to ob-
tain full credibility (k = 0.05, p = 0.95) (or, equivalently, full credibility
(k = 0.05, α = 0.05) ) for your estimate?
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4. Aggregate claims S are modeled by a compound distribution of the form
S = X1 + · · · + XN . The parameter of interest is the pure premium
θ = E(N)E(X).

(a) Show that the number of claims n(k,α) necessary for full credibility
(k, α) is of the form

n(k,α) =
z2
1−α/2

k2

(
V ar(N)
E(N)

+
V ar(X)
E2(X)

)
=
z2
1−α/2

k2

(
V ar(N)
E(N)

+
E(X2)
E2(X)

− 1
)
. (5.13)

(b) Show that if N is Poisson, then Equation (5.13) reduces to

n(k,α) = (z1−α/2/k)2(E(X2)/E2(X)),

while if X is constant it reduces to

n(k,α) = (z1−α/2/k)2(V ar(N)/E(N)).

The pure premium is θ = λE(X). Assume the mean claim fre-
quency per policy is 0.015, while the mean and variance of a claim
are, respectively, 4,000 and 2,000,000. With this information, what
would you estimate the minimum number n of policies for full cred-
ibility (k = 0.05, α = 0.02) to be?

5. Annual aggregate claims are modeled by a compound Poisson distri-
bution where the claim distribution is well approximated by a gamma
distribution with shape parameter 2 (X ∼ Γ(2, β)). Full credibility in
estimating the pure premium θ = E(S) is defined by having a 95%
chance of the estimator differing from the true value by at most 0.04 θ.
What partial credibility (using the square root rule) would be assigned
to experience from 1200 claims?

6. The probability that an insured individual will give rise to no claims
next year is e−θ, where θ varies by individuals according to the density
function fΘ(θ) = 25 θ e−5θ. What is the probability that a randomly
selected individual will give rise to no claims next year?

7. The number of annual claims for malicious damage to a local school are
modeled by a Poisson distribution with parameter λ, where λ is initially
assumed to be one of the values (1, 2, 3, 4, 5) with prior distribution
fΛ(λ) = (0.3, 0.3, 0.2, 0.1, 0.1). Over a three-year period, the annual
claims experience was (3, 2, 7). Update the distribution for λ (find the
posterior) and find the Bayesian estimates of λ when using the quadratic,
absolute value and zero-one loss functions.
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8. A group scheme of term life insurance covers 200 lives, each of which
is independent with respect to mortality for the coming year. Assume
that the probability of death q for the next 12 months is the same for
all lives, and although q is unknown previous experience suggests that a
prior density of the form (β+1)β q (1−q)β−1 for 0 < q < 1 is appropriate
where the prior mean is 0.1. Calculate the parameter β for this prior. If
25 people in this scheme die in the coming year, determine the posterior
estimate for q and write it as a credibility estimate.

9. Claims in an automobile portfolio are modeled by a Burr distribution
with density function given by

f(x | θ) =


2θx

(1 + x2)θ+1
for x > 0

0 otherwise,

where θ is an unknown parameter. Prior information suggests that
a gamma distribution Γ(42, 20) is appropriate for θ. If a sample of
n = 200 claims is taken, determine the form of the Bayesian estimator
for θ, assuming a quadratic loss function is used. Give an expression for
a 90% Bayesian belief interval for θ.

10. A random variable Y modeling claim size has density function of the
form

fY (y) = 2 c y e−cy2
for y > 0,

where c is an unknown parameter. Prior information on c suggests the
gamma distribution Γ(α = 15, λ = 24) is suitable. A sample of 40 values

of Y yields
40∑
1
y2

i = 32.5. Determine the Bayesian estimator of c using a

quadratic loss function.

11. Claims in a portfolio are made according to a Poisson process at the rate
of λ per year. Based on collateral data and experience, it is felt that a
gamma distribution Γ(r, α) with mean 50 and variance 25 is appropriate
for λ.

(a) Determine the parameters r and α of the prior distribution.

(b) Suppose that data collected over eight years gave rise to 448 claims.
Determine the posterior distribution for λ and show that the pos-
terior mean may be written as a credibility estimate. Find an
(approximate) 95% Bayesian interval for λ.

12. Claim amounts handled by a general insurer follow a probability distri-
bution with density function

f(x | λ) =
{

1
2λ

3x2e−λx x > 0
0 otherwise.
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Prior information on λ can be summarized by an exponential distri-
bution with mean 0.002. A sample of n = 100 such claims is taken.
Determine the form of the Bayesian estimate for λ (using a quadratic
loss function). Would the estimate for λ using an “all or nothing (or
zero-one) loss” be higher or lower than using quadratic loss? Justify
your answer.

13. Claims in an insurance portfolio are uniformly distributed on the interval
(0, θ) where θ is unknown. A prior distribution for θ is given by the
density

f(θ) =
5 · (500)5

θ6
for θ ≥ 500 and 0 otherwise.

(a) Determine an estimate of θ based on the mean of the prior distri-
bution.

(b) The claims record for one year yields the following 10 values:

350, 410, 200, 520, 135, 175, 600, 450, 800, 250.

Determine the posterior distribution for θ based on this data and
obtain the Bayes estimate of θ using a quadratic loss function.

14. Claims are uniformly distributed on the interval (0, θ), although the
upper limit θ on the size of a claim itself is not actually known. It
is felt, however, that prior knowledge on θ can be summarized by a
distribution with density function

f(θ) =
{
α lα / θα+1 for θ ≥ l, and
0 otherwise

}
where α and l (lower limit on θ) are known positive parameters. Show
that the posterior distribution on observing a sample of n claims has
the same general form, and find the resulting Bayesian estimate for θ.

15. Let Y represent the proportion of a 20-year mortgage that has been
repaid at the end of 16 years. Assume that Y has a density function
of the form αyα−1 for 0 < y < 1, and that prior knowledge about the
parameter α is summarized by a Γ(α1, β1) distribution. Find the pos-
terior mean and variance for α resulting from a sample of proportional
repayments y = (y1, . . . , yn).

16. Annual claim numbers Xi are modeled by a Poisson distribution with
unknown parameter λ. Prior knowledge about λ can be summarized by
a uniform distribution on the interval [60, 120].

(a) Determine the form of the Bühlmann credibility estimator of the
pure premium E(Xn+1) based on a random sample x of claim num-
bers over n years.
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(b) What would the estimate be if X = (106, 105, 110, 98, 101, 113)?
(c) Generate for yourself six observations from a Poisson distribution

with mean 80, and determine the Bühlmann credibility estimate.

17. Small companies in an industrial estate are insured for building damage.
Prior claims experience with such companies has led to modeling annual
aggregate claims by a compound Poisson distribution. Generally speak-
ing, companies are divided into three types – those of type θ1, θ2 and θ3,
where the different assumptions on the compound Poisson distributions
are made as given in Table 5.10. Approximately 50% of companies are
classified as type θ1, while 30% are of type θ2. If the claims experience
over the past four years from a relatively new company is given by

S = (s1, s2, s3, s4) = (300 + 705 + 400, 520 + 635, 475, 702 + 235 + 528),

then what would you quote as a pure premium (for next year) for this
company?

TABLE 5.10

Types of building insurance in industrial estate.
Company type θ Probability (θ) Rate λ Severity X

θ1 0.5 1 Pareto (4,1200)
θ2 0.3 1.5 Pareto (4,1500)
θ3 0.2 2 Pareto (4,1800)

18. Continuing with Examples 5.5 and 5.8, suppose thatX6 is actually equal
to 4. Then what is the predictive probability distribution for X7, and
what is P (X7 = 4)?

19. A group of n policies gives rise to a random number N of claims in a
given year. The incidence rate λ for claims is the same for each policy,
and a prior density for λ which is Γ(α, β) is appropriate – i.e., the prior
density takes the form

f(λ) = βαλα−1e−βλ/Γ(α), λ > 0.

Assume that, conditional on a given λ, the probability distribution for
N is given by

P (N = k|λ) = e−nλ (nλ)k

k!
k = 0, 1, 2, . . . .

(a) Having observed N = k, show that the posterior density for λ is a
gamma density and express the (posterior mean) estimate of λ as
a credibility estimate. How does the credibility factor depend on
n, α and β?
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(b) Suppose now it is felt that an appropriate prior mean and variance
for λ are 0.30 and 0.006, respectively. If there were 40 claims out
of 100 policies last year, what would be the credibility estimate of
λ? How many claims would you predict for next year if business
doubles?

20. A life insurance portfolio consists of 500 policies, each independent of the
others with respect to mortality. Suppose the common rate of mortality
is q. Although q is unknown, it is felt that a prior density of the form
f(q) = β(1 − q)β−1, 0 < q < 1 is appropriate, where the prior mean
is 0.1. Calculate the parameter β for this prior. If 40 policyholders
die within the following year, determine the posterior estimate of q and
write it as a credibility estimate.

21. Total aggregate claims in a particular company are modeled with a
N(µ, 12,0002) random variable, where µ is unknown. Prior informa-
tion about µ suggests that it is “95% likely” to lie in the interval
[130,000, 170,000]. Aggregate claims from the last five years were not
incorporated in the prior information and are as follows:

146,000, 142,000, 153,000, 127,000, 132,000

(a) Convert the prior information given into a suitable prior distribu-
tion for µ.

(b) Using your assumed prior from (a), determine the Bayesian credi-
bility estimate for µ using quadratic loss. Also find a 95% Bayesian
interval for µ.

(c) Determine the standard 95% confidence interval for µ based on
the claims data. Contrast briefly the difference in interpretation
between the standard confidence interval and the Bayesian interval.

22. Claims are made in an insurance portfolio according to a Poisson dis-
tribution with rate parameter λ per year. A prior gamma distribution
Γ(α, β) with mean 10 and variance 20 is used for λ. Calculate the pa-
rameters α and β for the prior distribution of λ. Suppose that over the
past six years a total of 72 claims have been made on this portfolio.
Determine the posterior distribution for λ, and show that the posterior
mean for λ may be written as a credibility estimate.

23. The data in Table 5.11 give the aggregate claims for household damage
insurance in six successive years by four separate (regional) groups of
policyholders. Assume that the claim amounts have been adjusted to
remove any effect of inflation and that the unit of money is millions of
dollars. Using empirical Bayes credibility Model 1, calculate estimates
of the pure premiums for the coming year for each of the regions.
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TABLE 5.11

Household damage claims.
Year → 1 2 3 4 5 6

Region A 206 146 271 178 136 162
B 144 284 310 218 266 301
C 64 57 43 97 132 110
D 204 186 248 222 188 204

24. Summary statistics on aggregate claims for each of four car rental com-
pany risks over five years are given in Table 5.12 below. HereXij denotes
aggregate claims in year j for risk i. Using Model 1 of empirical Bayes
credibility, calculate the credibility factor and credibility premium for
risk 1. In your opinion, is Model 1 suitable to calculate credibility pre-
miums for these risks?

TABLE 5.12

Car rental company risks.

Risk X̄i

∑5
j=1(Xij − X̄i)2

1 6,132 5,321,643
2 7,465 5,974,212
3 4,927 4,321,615
4 23,416 41,271,314

25. Data on annual aggregate claims ($000′s) for each of three employer
liability risks over five years is given in Table 5.13. Here Yij denotes
claims in year j for risk i.

TABLE 5.13

Annual aggregate claims for employer liability risks.
Year

Risk 1 2 3 4 5 Ȳi

5∑
1

(Yij − Ȳi)2

1 3,894 5,188 3,582 4,680 5,182 4,505 2,180,690
2 3,940 2,994 3,582 4,068 4,434 3,804 1,190,476
3 4,382 5,028 4,434 4,844 5,642 4,866 1,049,784

(a) Using Model 1 of empirical Bayes credibility, calculate the credi-
bility factor and credibility premium for next year for each of the
three risks.
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(b) Suppose now that you also have a risk volume denoted Pij corre-
sponding to each Yij above. Some summary statistics for the risk
volumes are as follows:

Risk
5∑
1
Pij

1 3,560
2 2,276
3 4,012

In using Model 2 for empirical Bayes credibility theory, the credi-
bility premium per unit of risk volume for next year for risk 1 has
been calculated to be 6.46. Calculate the credibility premium per
unit of risk volume for next year for risks 2 and 3.

26. The annual numbers of fatal traffic motor accidents are monitored in
three different geographical regions, with the results given in Table 5.14.
Two analysts are asked to predict the number of fatal traffic accidents
for Region A for next year. Analyst 1 would like to like to use the
empirical Bayes Model 1 to make a prediction. Analyst 2 is going to use
a Bayesian approach assuming the number of annual traffic accidents is
a Poisson variable with parameter λ, and where she can assume prior
knowledge of λ summarized by a gamma Γ(54, 3) distribution. Find the
predictions which the two analysts would make in this situation!

TABLE 5.14

Annual fatal traffic accidents.
Year → 1 2 3 4 5 6

Region A 14 17 12 19 18 16
Region B 21 32 16 7 17 33
Region C 11 7 9 8 12 13
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No Claim Discounting in Motor Insurance

6.1 Introduction to No Claim Discount schemes

If risks are not all equal in an insurance scheme, it seems fair (and perhaps
essential) to require insured parties to contribute (in the form of premiums)
roughly in proportion to their relative risk. The risk of a motor accident,
which often gives rise to an insurance claim, varies from driver to driver.
What are the factors that contribute most to high risks of claims in motor
insurance?

It would seem that the risk of a motor accident must be correlated with
the annual driving distance (mileage) of a driver, but this is often difficult
to measure in an economical way. Some attempts have been made to use
it directly (Sweden and Holland) or indirectly (using, for example, distance
between home and work in the USA), but many of these measures are often
underreported. In the USA there are indications (Lemaire [37]) that such
underreporting results in more motor insurance fraud than faked accidents.

The ability or skill of a driver is also related to the propensity to give rise to
a claim. This encompasses such factors as knowledge and appreciation of the
rules of the road, care with respect to speed restrictions and driving conditions,
and good judgement about driving when tired or under the influence of factors
such as alcohol, tension and aggressiveness. However, these factors are also
difficult if not impossible to measure cheaply and effectively. Some variables
that are more accessible and commonly used in rating are the age, gender,
marital status, occupation, residence and driving experience of the driver.
The age, engine size, model, purpose and even color of the vehicle are also
used. In his study, Coutts [17] suggested using type of cover, policyholder age,
vehicle age and vehicle size as rating factors, while Brockman and Wright [10]
suggested adding district and vehicle use to these. Having selected appropriate
variables, each set of individuals with common values for these factors (or
covariates) constitutes a rating or tariff group. The group is then charged
an appropriate premium by the insurance company based on its own (and
others’) experience. However, such groups can still be quite heterogeneous in
their risk factors, and insurers are constantly trying to reduce heterogeneity
in risk groups.

Research has shown (e.g., Lemaire [35]) that if insurers are allowed to use

191
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only one rating category then it should be based on some form of merit-rating.
Evidence suggests that the best indicator of future claims for a driver is the
individual’s past claims history. In the 1950s the idea emerged to adjust one’s
initial premium assessment following the actual observation of the individual’s
claims experience with the use of a No Claim Discount (NCD) system for
rating.

No Claim Discount systems (sometimes also called Bonus–Malus systems)
are experience rating systems which are commonly used in motor insurance.
NCD schemes (or systems) represent an attempt to categorize policyholders
into relatively homogeneous risk groups who pay premiums relative to their
claims experience. Those who have made few claims in recent years are re-
warded with discounts on their initial premium, hence are enticed to stay with
the company. Depending on the rules in the scheme, new policyholders may
be required to pay the full premium initially and then obtain discounts in the
future as a result of claim-free years.

There are a wide variety of NCD schemes. The regulatory systems in the
UK and Ireland give insurance companies considerable latitude in designing
their own schemes and tariff structures. The number of discount classes, their
range, and the rules for moving between them can vary considerably, but
typical features of such schemes are the following:

1. The number of classes (or discount levels) in the scheme varies between
four and eight, with six being the most common.

2. The discount levels increase in uniform steps (from a 0% discount) and
depend on the number of classes, with the maximum discount varying
between 40% and 70%.

3. Transition rules vary considerably. A policyholder may go back two
levels for the first claim in any year and to the 0% discount level if there
is more than one. In the event of a claim-free year, the policyholder may
move up one class (to a better discount level) or remain in the maximum
discount class.

Bonus–Malus systems are used in some European countries and although they
are similar to the NCD systems described above, they have the following
differences:

1. There are often many classes (varying from 7 to 22) and a much wider
range of premium levels (for the same rating group), with the maximum
being up to six times the minimum premium.

2. Drivers usually start in a class in the middle of the system and obtain
discounts (bonuses) following claim-free years. Step-backs of several
classes result when claims are made, often into classes where the pre-
mium is more than that of the initial class (maluses).
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Why are NCD schemes in such popular use in motor insurance? Introduc-
ing discounts for those with a good claims record should, in theory, reduce
the heterogeneity between policyholders within the various rating classes and
allow the insurer to charge premiums that are more appropriate to the indi-
vidual risks. Since the consequence of making a claim is normally an increased
premium in the following year, policyholders are naturally discouraged from
making small claims. This will presumably reduce both the number of claims
made by the policyholders and the overall management costs incurred by the
insurer. It is also felt that the penalty associated with making a claim will
lead to more caution in driving.

Although NCD schemes do seem to reduce the number of small claims, they
do not seem to be sufficiently effective in reducing heterogeneity, and there
is no evidence that they have resulted in safer driving. NCD schemes are,
however, well established, and the public perception is that they penalize the
poorer drivers while rewarding those with good records, consequently making
it difficult to introduce radically different systems into the market.

6.2 Transition in a No Claim Discount system

A No Claim Discount system (NCD) is defined by a set of discount classes
E = {E0, E1, . . . , Ek} and a transition rule for moving between them.

6.2.1 Discount classes and movement in NCD schemes

Normally we will use E0 to denote the class with no (0%) discount, and it
is usually the class where new entrants (without claims experience) enter the
scheme. As i increases from 0 to k, Ei represents a class with a higher premium
discount. At the end of a policy year, the insured may move to another class
(and premium rate) depending on their claims experience during the year.
The specific rule for movement in the system is called the transition or step-
back rule. Most NCD systems penalize on the basis of the number but not
the size of claims, implicitly making the assumption that claim frequency and
loss severity are independent. (It seems somewhat reasonable to accept that
for the most part the cost of an accident is independent of whatever caused
it. Someone skidding on a wet road might crash headlong into a car full of
passengers, or be more fortunate in landing softly in a green median strip in
the road. The same driving mistake can in these two instances result in claims
of very different magnitudes.)

Example 6.1
An NCD system has the discount classes: E0 (no discount), E1 (20% discount)



194 NO CLAIM DISCOUNTING IN MOTOR INSURANCE

and E2 (40% discount). Movement in the system is determined by the rule
whereby one steps back one discount level (or stays in E0) with one claim in a
year, and returns to a level of no discount if more than one claim is made. A
claim-free year results in a step up to a higher discount level (or one remains
in class E2 if already there). This elementary example of an NCD system
has only three discount classes (see Table 6.1), but can be efficiently used to
illustrate many of the general ideas about how NCD systems operate.

TABLE 6.1

NCD classes for Example 6.1.
NCD class E0 E1 E2

% Discount 0 20 40
% Pure premium 100 80 60

For our second example, we consider a more realistic system with six dis-
count classes (k = 5) and a more typical transition rule.

Example 6.2

An NCD system has six discount classes E = {E0, E1, . . . , E5} as illustrated in
Table 6.2. Consider the normal or typical transition rule whereby one moves
up one class as a result of no claims being made in the current year (or stays
in the top discount class if that is the present class), drops back two classes
as a result of one claim (in the case where one is in class E0 or E1 one simply
steps back to class E0), and goes back to paying the full pure premium (class
E0) if two or more claims are made in the current year.

TABLE 6.2

NCD classes for Example 6.2.
NCD Class E0 E1 E2 E3 E4 E5

% Discount 0 10 20 30 40 50
% Pure premium 100 90 80 70 60 50

Suppose that Richard joined the system (and starts in E0) as a policyholder
on July 1, 1992, paying the full (or pure) premium of 800. If he made claims
on May 12, 1996 and September 1, 1999, then the following diagram indicates
his path through the classes in the 10 year period up to July 1, 2002, when
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his premium was 480 (being in class E4 on that date):

E0 → E1 → E2 → E3 → E1 → E2 → E3 → E4 → E2 → E3 → E4

(1992) → → (2002)

A less harsh rule for the insured in Example 6.2 would be where the pol-
icyholder only steps back one class or discount level consequent to making
one or more claims in the past year. We shall refer to this (gentle way of
penalizing claimants) as the soft transition rule. The harshest rule in this
situation would be to send a policyholder back to the beginning (that is, to
the class E0 where the full premium is paid) on making one or more claims,
and we will refer to this as the severe transition rule. There are of course a
plethora of possible transition rules which are intermediate to the soft and
severe rules described above. Problem 1 asks one to determine the premium
Richard would have paid on July 1, 2002, if either the soft or severe transition
rules had been applied.

6.2.2 One-step transition probabilities in NCD schemes

Modeling movement in an NCD system via a stochastic process can give in-
sight into future numbers of policyholders in the various discount classes as
well as the annual premium income. Given a set of discount classes E and a
transition rule for an NCD system, let us assume that movement from dis-
count class Ei in one year to discount class Ej in the next is a random event
with probability pij , which is the same for all of the insured in a specific rating
group. We are implicitly assuming that movement from any class Ei in one
year to another class Ej in the following is independent of how the individual
arrived in class Ei to begin with. This property (that the future depends on
the present but not the past) is commonly called the Markov property.

The square k + 1 by k + 1 matrix of one-step (one year) transition proba-
bilities is given by P = (pij), where we write

pij = P (in discount class Ej next year | in discount class Ei this year).

Observe that if one is presently in class Ei, then one must move to some state
Ej (for j = 0, 1, .., i, .., k) next year, and hence the probabilities in the ith

row of P must sum to 1 (for each i). Such a matrix is known as a stochastic
matrix. Note that we are labeling our k+1 rows from i = 0 to i = k, hence in
particular, row 0 consists of the probabilities of going from discount class E0

to each of the other classes in one year.
In Example 6.1 with three discount levels and k = 2, let us suppose that

for anyone in this scheme the probability of one claim in a year is 0.2 while
the probability of two or more claims is 0.1. Then the matrix of one-step
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transition probabilities for this system is given by:

P =

0.3 0.7 0.0
0.3 0.0 0.7
0.1 0.2 0.7

 . (6.1)

Transition in any NCD system from state Ei to Ej may also occur over any
two-year period by passing through any intermediate state El, where l =
0, 1, . . . , k. Summing over the possibilities for l, we see that the probability
p2

ij of moving from state Ei to Ej in any two-year (two-step) period is given
by

p2
ij =

k∑
l=0

pil plj .

Note that p2
ij is not the square (pij)2 of the probability pij . In fact the

two-step transition probability p2
ij corresponds to multiplying (term by term)

row i of the transition matrix P by column j of P. The matrix of two-step
transition probabilities is actually the matrix product (denoted by ·) of P
with itself, which is written as P2 = P ·P. For example, if P is the one-step
transition matrix associated with Example 6.1 above, then the matrix P2 of
two-step transition probabilities is given by:

P2 =

0.3 0.7 0.0
0.3 0.0 0.7
0.1 0.2 0.7

 ·

0.3 0.7 0.0
0.3 0.0 0.7
0.1 0.2 0.7

 =

0.30 0.21 0.49
0.16 0.35 0.49
0.16 0.21 0.63

 .

In this system, if one is in discount class E1 (and paying 80% of the full
premium) in a given year, then the probability that one is still paying the same
premium two years later is 0.35. The probability is 0.63 that an individual
who is on the maximum discount retains that discount two years later.

Of course, one may also consider the probabilities of going from one discount
class to another in n years for larger values of n. In a fashion similar to
the above development, one may show that the matrix of n-step transition
probabilities (pn

ij) is given by the n-fold matrix product of P with itself, that
is Pn. This emphasizes the importance of the basic transition matrix P in
studying movement in an NCD system.

The matrix of two-step transition probabilities P2 is, like P, a stochastic
matrix, and it can easily be seen that this is the case for Pn for any n.
Using computer software (like Excel, R, S-Plus or Mathematica) to multiply
matrices, one may quickly demonstrate that with the transition matrix P of
Example 6.1,

P3 =

0.202 0.308 0.490
0.202 0.210 0.588
0.174 0.238 0.588

 and P6 =

0.1883 0.2435 0.5682
0.1855 0.2463 0.5682
0.1855 0.2435 0.5710

 .
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Interestingly, we shall see that usually the sequence of matrices Pn con-
verges as n → +∞ to a matrix whose rows are constant, any one of which
represents the long-run probability (denoted by π = (π0, π1, . . . , πk) ) that an
individual will be in the various states or discount levels. In particular, the
entries in each individual column of this limiting matrix will be identical. For
example, using the transition matrix P of (6.1), one may show that

P20 = P21 =

0.1860465 0.2441860 0.5697674
0.1860465 0.2441860 0.5697674
0.1860465 0.2441860 0.5697674

 .

Most companies will place drivers in class E0 with no discount at the start
of their driving career. However, they often recognize bonuses and experience
earned with other companies in order to entice customers to transfer into their
own system. For an NCD system with discount classes E = {E0, E1, . . . , Ek},
we shall use p0 = (p0

0, p
0
1, . . . , p

0
k) to denote the vector of probabilities with

which an individual starts in the various discount levels. The set of classes
(or states) E = {E0, E1, . . . , Ek}, the matrix of transition probabilities P,
and the initial distribution p0 completely define a Markov chain model for an
NCD system. Although our models for NCD systems have a finite number of
classes or states, Markov chains may have an infinite number of states, and
are special cases of Markov processes. There is a well-developed theory for
Markov chains (see, for example, Feller [24] or Ross [53]), and the theory of
Markov chains is now extensively used as a simulating tool in Markov Chain
Monte Carlo (MCMC) methods. Assuming that a person initially starts in
category E0 and that no discount is given initially in year 0, then we have
that

p0 = (p0
0, p

0
1, . . . p

0
k) = (1, 0, . . . 0).

Similarly, we use pn+1
j to denote the probability that an individual is in class

Ej at time (year) n+1. In order to be in class Ej at time n+1, an individual
has to be in some class El in year n and then pass to Ej in the following year.
Therefore we must have

P (Ej in year n+ 1) = pn+1
j =

k∑
l=0

pn
l plj .

In other words

pn+1 = (pn+1
0 , . . . , pn+1

k ) = (pn
0 , . . . , p

n
k ) ·P = pn ·P (6.2)

and in particular, that

p1 = (p1
0, . . . , p

1
k) = (p0

0, . . . , p
0
k) ·P.

Similarly, one may show that for any n and m,

pn+m = (pn+m
0 , . . . , pn+m

k ) = (pn
0 , . . . , p

n
k ) ·Pm.
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Suppose that in Example 6.1 policyholders enter the classes E0, E1 and E2

with respective probabilities 0.5, 0.3 and 0.2 (that is, the initial distribution
is given by p0 = (0.5, 0.3, 0.2)). Then the probability distribution for year 1
is given by the vector:

p1 = p0 ·P = (0.5, 0.3, 0.2) ·

0.3 0.7 0.0
0.3 0.0 0.7
0.1 0.2 0.7

 = (0.26, 0.39, 0.35),

and for year 2 by

p2 = p0 ·P2 = (0.5, 0.3, 0.2) ·

0.30 0.21 0.49
0.16 0.35 0.49
0.16 0.21 0.63

 or

= p1 ·P = (0.26, 0.39, 0.35) ·

0.3 0.7 0.0
0.3 0.0 0.7
0.1 0.2 0.7


= (0.230, 0.252, 0.518).

Table 6.3 gives an indication of how the probability distributions pn sta-
bilize as the years go by. Note the relative stability in these distributions
even after four or five years. We will see that for most Markov chain NCD
models, no matter what the initial distribution p0 is, there is a stationary
distribution π = (π0, π1, . . . , πk) to which pn converges as n→∞. Moreover,
the convergence generally speaking is quite rapid.

Suppose that 2000 policyholders are placed in the discount classes of Ex-
ample 6.1 in year 0 according to the initial distribution p0 = (0.5, 0.3, 0.2),
and that the pure premium is $600. Assuming premiums are paid at the
beginning of a year, the initial (or year 0) “expected” premiums would be
2000 [0.5(600)+0.3(480)+0.2(360)] = $1,032,000. Similarly, expected premi-
ums in year 1 would be 2000 [0.26(600)+0.39(480)+0.35(360)] = $938,400.
Expected premiums for other years are given in Table 6.3, and again we note
that these stabilize quickly.

6.2.3 Limiting distributions and stability in NCD models

Let us suppose that for a given Markov chain NCD model, the limiting prob-
abilities πj = limn→∞ pn

j exist for all j. Then from Equation(6.2), the prob-
ability vector π = (π0, π1, . . . , πk) satisfies

π = lim
n→∞

pn = lim
n→∞

pn+1

= lim
n→∞

pn ·P

= π ·P.

A probability distribution a = (a0, a1, . . . , ak) is a stationary (or equilibrium)
distribution for the Markov chain with transition matrix P if a = a · P.
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TABLE 6.3

Probability distributions and expected premiums for
Example 6.1 when p0 = (0.5, 0.3, 0.2).

Discount class E0 E1 E2 Expected
Year n pn

0 pn
1 pn

2 premiums
0 0.500 0.300 0.200 1,032,000.0
1 0.260 0.390 0.350 938,400.0
2 0.230 0.252 0.518 890,880.0
3 0.1964 0.2646 0.539 877,776.0
4 0.1922 0.2453 0.5625 871,123.2
5 0.1875 0.2470 0.5655 869,288.6
6 0.1869 0.2443 0.5688 868,357.2
10 0.1861 0.2442 0.5697 867,915.8
15 0.1860 0.2442 0.5698 867,907.0
30 0.1860 0.2442 0.5698 867,907.0

Therefore in our situation π is a stationary distribution. A brief description
will now be given of some of the terminology which implies that in the standard
NCD Markov chain model there exists a unique stationary distribution. An
interesting aspect of such a stationary distribution π is that although it clearly
depends on the (one-step) transition matrix P, it is independent of the initial
distribution p0.

In a Markov chain model for movement in NCD systems, we normally as-
sume that starting with no discount in class E0, it is possible to reach any
other discount class in a finite number of years (for any j > 0 there exists
some nj such that pnj

0j > 0). We also assume that if one is in the maximum
discount level Ek, then it is possible (by having a sufficiently large number of
claims in the current or subsequent years) to return to the discount class E0.
In the technical jargon of Markov chains, this means that any two states Ei

and Ej can communicate with each other. In other words, it is possible to
go (with positive probability in a finite number of steps) from any one state
to any other. More precisely, given i and j, there exist m and n such that
pm

ij > 0 and pn
ji > 0. This establishes what is termed the irreducible property

of the Markov chain model (that is, it cannot be reduced further to a smaller
self-contained collection of classes or states). We also assume that once in the
maximum discount level Ek, it is possible to stay in that class for the next
year (usually following a claim-free year), that is, pkk > 0 . This property (to-
gether with the irreducible property) enables one to show all discount classes
are aperiodic∗ (they are not periodic or cyclic in a technical sense).

∗The discount class Ei has period r if pn
ii = 0 whenever n is not divisible by r, and r is the

greatest integer with this property. For example if Ei has period 2, then return visits to Ei

can only occur in an even number of years and p2
ii > 0. A class (or state) with period 1 is

called an aperiodic class.
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To summarize, our models for NCD systems are irreducible aperiodic finite
state Markov chains, and moreover the states or discount levels are ergodic†.
This is important, for a classic result in the theory of Markov chains (see,
for example, Ross [53], p.175) implies that in this situation‡ there exists a
unique probability distribution π = (π0, π1, . . . , πk) which is stationary for
the Markov chain and has the property that

πj = lim
n→∞

pn
ij = lim

n→∞
pn

j ,

independent of the initial distribution p0.
To find the equilibrium distribution, we solve the k+1 equations given by

the matrix expression π = π ·P, and they can be written as:

π0 = π0p00 + π1p10 + π2p20 + . . .+ πkpk0

π1 = π0p01 + π1p11 + π2p21 + . . .+ πkpk1

...
...

πk = π0p0k + π1p1k + π2p2k + . . .+ πkpkk.

For Example 6.1 these are the three equations given by the matrix expres-
sion

π = π ·P = (π1, π2, π3) ·

0.3 0.7 0.0
0.3 0.0 0.7
0.1 0.2 0.7

 ,

or equivalently,

π0 = 0.3π0 + 0.3π1 + 0.1π2

π1 = 0.7π0 + 0.2π2

π2 = 0.7π1 + 0.7π2.

From the last of these equations, it follows that

π2 = 7/3π1,

and therefore using the second equation, one finds

π1 = 0.7π0 + 0.2(7/3)π1 ⇒ π1 = (21/16)π0.

†The eventual or limiting distribution of the states of the system is independent of the
initial state.
‡Another sufficient condition is that the matrix of transition probabilities P has one eigen-
value = 1, with the rest being less than 1 in absolute value. The equilibrium distribution
is the eigenvector (when standardized to be a probability vector) corresponding to the
eigenvalue 1.
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Since π is a probability distribution,

1 = π0 + π1 + π2 = π0 + (21/16)π0 + (7/3)(21/16)π0, thus

π0 =
1

1 + (21/16) + (7/3)(21/16)
= 0.1860.

The equilibrium distribution for this system is π = (0.1860, 0.2442, 0.5698).
Note in particular from Table 6.3 that the probability distribution p15 is
already (to four decimal places) equal to this equilibrium distribution. In
general, pn itself depends on the initial distribution p0, but the rate of con-
vergence to the equilibrium distribution π depends on P, and usually it is
quite rapid.

Although in Example 6.1 we assumed that the probability distribution for
the number of claims N in a year had distribution defined by

P (N = 0) = 0.7, P (N = 1) = 0.2, and P (N ≥ 2) = 0.1,

it is perhaps more common to model N by a Poisson distribution with rate
parameter λ = q. In this situation, the probabilities of 0, 1, 2, 3, . . . , k−1, and
k or more claims in a year, are, respectively,

e−q, qe−q, q2e−q/2!, . . . , qk−1e−q/(k − 1)! , and 1−
k−1∑
i=0

qie−q/i!.

Consider the NCD system of Example 6.2 with six discount classes where
we model the number of claims in a given year for an insured individual by
a Poisson random variable with rate parameter λ = 0.1. Then the one-step
probability transition matrix for the normal rule (two steps back for one claim,
one step ahead for none, etc.) is given by

P =


1− e−0.1 e−0.1 0 0 0 0
1− e−0.1 0 e−0.1 0 0 0
1− e−0.1 0 0 e−0.1 0 0
1− 1.1e−0.1 0.1e−0.1 0 0 e−0.1 0
1− 1.1e−0.1 0 0.1e−0.1 0 0 e−0.1

1− 1.1e−0.1 0 0 0.1e−0.1 0 e−0.1



=


0.0952 0.9048 0 0 0 0
0.0952 0 0.9048 0 0 0
0.0952 0 0 0.9048 0 0
0.0047 0.0905 0 0 0.9048 0
0.0047 0 0.0905 0 0 0.9048
0.0047 0 0 0.0905 0 0.9048

 .

The equilibrium distributions are given in Table 6.4 for this NCD system using
the three transition rules (in the soft rule a person steps back one class for



202 NO CLAIM DISCOUNTING IN MOTOR INSURANCE

TABLE 6.4

Equilibrium distributions for Example 6.2.
Discount classes

Transition rule E0 E1 E2 E3 E4 E5

Soft 0.000 0.000 0.001 0.010 0.094 0.895
Normal 0.009 0.016 0.022 0.091 0.082 0.780
Severe 0.095 0.086 0.078 0.070 0.064 0.607

any number of claims, and in the severe transition rule a person goes all the
way back to E0 for any number of claims) for Example 6.2. Note that with
the severe transition rule we expect 9.5% of policyholders to be paying the
full premium annually once stability has been reached, while with the soft
transition rule we expect relatively few (less than 0.05% or almost no one) to
be paying this. An interesting observation from Table 6.4 is that in the long
run, no matter what the transition rule (soft, normal or severe) is, a majority
of the drivers are in the maximum discount class E5.

Of course, it is of interest to know how long it takes to reach the so-called
steady state in such systems, in addition to what are the factors which in-
fluence this? When using an initial distribution where everyone starts in the
class E0 with no discount (that is p0 = (1, 0, . . . , )), Table 6.5 (Colgan [15])
gives the period of convergence in years to equilibrium. Note that convergence
is quickest with the severe transition rule. Note also that (in this example)
the time to convergence for the soft and normal transition rules is initially
increasing and then decreasing as a function of λ.

Here time to equilibrium is defined§ as the smallest number n such that
| pn

i − πi |< 0.005 for all i = 0, 1, . . . , k. Rates of convergence clearly depend
on the stopping threshold (chosen to be 0.005 in this case), but in fact most
of these systems settle down to reasonably steady levels before the stated
number of years to convergence. Studies have shown that the following factors
are influential in determining the convergence period: (a) the claim rate λ,
(b) the step-back rule, (c) the number of discount classes and (d) the initial
distribution p0.

6.2.3.1 Equilibrium distributions for soft and severe transition
rules

There are compact forms for the stability distributions when the soft or severe
transition rules are used and the probability of making no claims in a year
is the same (say b) for all policyholders (that is, independent of the discount
class). For the soft transition rule the one-step transition matrix P takes the

§An alternative measure of convergence is given by Bonsdorff [5] who used a measure called
the total variation defined as TV n =

P
i | pn

i − πi | .
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TABLE 6.5

Time to equilibrium
convergence for Example 6.2.

Transition rule
λ Soft Normal Severe

0.05 10 12 6
0.10 14 15 6
0.20 18 18 6
0.35 26 18 6
0.50 32 13 6
0.75 30 10 6
1.00 22 7 6

form:

P =



1− b b 0 0 . . 0 0 0
1− b 0 b 0 . . 0 0 0
0 1− b 0 b . . 0 0 0
. . . . . . . . .
. . . . . . . . .
0 0 0 0 . . 0 b 0
0 0 0 0 . . 1− b 0 b
0 0 0 0 . . 0 1− b b


.

Therefore the system of equations π = π ·P becomes

π0 = (1− b) (π0 + π1)
πi = b πi−1 + (1− b)πi+1 for i = 1, . . . , k − 1, and
πk = (1− b)πk−1 + b πk.

It then follows easily that πi = [b/(1− b)]iπ0 for i = 1, . . . , k, and therefore

πi =
[b/(1− b)]i

1 + [b/(1− b)] + [b/(1− b)]2 + . . .+ [b/(1− b)]k
for i = 0, . . . , k.

When the severe transition rule is used in an NCD system, then the one-step
transition matrix P takes the form

P =



1− b b 0 0 . . 0 0 0
1− b 0 b 0 . . 0 0 0
1− b 0 0 b . . 0 0 0
. . . . . . . . .
. . . . . . . . .
1− b 0 0 0 . . 0 b 0
1− b 0 0 0 . . 0 0 b
1− b 0 0 0 . . 0 0 b


.
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When there are k+1 discount classes it is easy to see that the k-step transition
matrix takes the form

Pk =


1− b b(1− b) b2(1− b) . . bk−1(1− b) bk

1− b b(1− b) b2(1− b) . . bk−1(1− b) bk

1− b b(1− b) b2(1− b) . . bk−1(1− b) bk

. . . . . . .
1− b b(1− b) b2(1− b) . . bk−1(1− b) bk

1− b b(1− b) b2(1− b) . . bk−1(1− b) bk

 .

Therefore when the severe rule is in effect, stability occurs in k+1 years, and
the equilibrium distribution is given by

πsevere = (1− b, b(1− b), b2(1− b), b3(1− b), . . . , bk−1(1− b), bk ).

Note that at any point in time the probability that any individual will return
to class E0 is 1 − b (the probability of one or more claims being made) with
the severe rule. Consequently, it should come as no surprise that the limiting
probability π0 is equal to 1− b.

Consider again the NCD system described in Example 6.2, but where now
the number of claims N is Poisson with parameter λ = 0.2. Then b = e−0.2

and the equilibrium distribution when the soft rule is in effect is

πsoft = (0.0004, 0.0019, 0.0085, 0.0382, 0.1724, 0.7787),

while for the severe rule the equilibrium distribution is

πsevere = (0.1813, 0.1484, 0.1215, 0.0995, 0.0814, 0.3679).

Table 6.5 shows that for Example 6.2, the time to convergence for various
values of λ (or b) is always 6 years with the severe transition rule.

6.3 Propensity to make a claim in NCD schemes

Following an accident, an insured individual will normally consider whether
or not it is actually worthwhile to make a claim due to the increased premium
payments (or discounts foregone) that will result by doing so. A decision
might be based on a quick calculation of the estimated increase in premium
payments. In such calculations, one compares the premiums which one would
expect to pay in the coming few years under the two situations where one
actually makes a claim now (C) and where one foregoes making a claim (NC)
and instead absorbs the loss. One therefore can determine for each discount
level a threshold value. If the loss due to the accident is greater than the
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threshold for an individual in a given discount class, then the individual should
make a claim, but otherwise forego doing so and absorb the loss. In making
these calculations one assumes that there will be no further claims made in
the short term (next couple of years), and that Year 0 refers to the current
year (when the accident has occurred, and presumably the premium for the
year has already been paid), Year 1 to next year, etc.

6.3.1 Thresholds for claims when an accident occurs

Consider Example 6.1 where there are the three discount levels of 0%, 20%
and 40%, and the full premium is $500. A person in E0 who has just had an
accident and now makes a claim (C) would expect to pay 500 + 400 + 300 =
$1200 in premiums over the next three years, while if no claim (NC) is made
this would be only 400+300+300 = $1000. Hence the difference or threshold
is $200, and the individual would (usually) only decide to make a claim if
the accident damage exceeded this threshold of $200. Similarly, an individual
in discount class E1 (respectively, E2) would claim if the loss exceeds $300
($100). These calculations are given in Table 6.6. Note that for this NCD
system, the premium effect of making (or not making) a claim in year 0 has
worn off by year 3. Essentially, in this system there is a maximum two-year
horizon on a decision to make a claim.

TABLE 6.6

Premiums and thresholds (T) for making claims in Example 6.1.
Class E0 E1 E2

0% Discount 20% Discount 40% Discount
Premium Year 0 500 400 300

C NC C NC C NC
Year 1 500 400 500 300 400 300
Year 2 400 300 400 300 300 300
Year 3 300 300 300 300 300 300

Total (Years 1-3) 1200 1000 1200 900 1000 900
T 200 300 100

For Example 6.2 with the same full premium of $500, the six discount levels
of 0%, 10%, 20%, 30%, 40% and 50%, and the transition rule of dropping back
two steps for one claim and to paying the full premium for more than one,
the effect of a single claim in the NCD system wears off in at most five years.
This can be seen from Table 6.7. For example, according to this table, a
policyholder in discount class E1 who has just incurred an accident should
make a claim if the loss exceeds $450, otherwise not. However, remember
that this table was constructed assuming no new claims are to be made in the
near future (for this type of person it would be five years). If such a person
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is very prone to accidents (and claims) and the chances are considerable that
another claim might be made in the next five years, then perhaps this should
also be taken into account in any decision. For instance, a person presently
in E1 who suffers a loss of $400 might well decide to make a claim if it is felt
that another accident within the next year is very likely.

TABLE 6.7

Premiums and thresholds (T) for making claims in Example 6.2.
Class E0 E1 E2 E3 E4 E5

Year 0 500 450 400 350 300 250
C NC C NC C NC C NC C NC C NC

Year 1 500 450 500 400 500 350 450 300 400 250 350 250
Year 2 450 400 450 350 450 300 400 250 350 250 300 250
Year 3 400 350 400 300 400 250 350 250 300 250 250 250
Year 4 350 300 350 250 350 250 300 250 250 250 250 250
Year 5 300 250 300 250 300 250 250 250 250 250 250 250

T 250 450 600 450 300 150

Example 6.3
An NCD scheme operates with four levels of discount: 0%, 20%, 30% and
40%. The rule for movement between discount levels is the soft rule whereby
a person moves up one step (discount level) next year if no claims are made
this year, while if one or more claims are made in a year then one drops to
the next lower discount level in the following year (or stays at 0% discount).
The full premium for an individual is $600 per year. A deductible is in effect
where the first $150 of any claim must be paid by the insured. When an
accident occurs, the appropriate damage (loss) distribution X is lognormal
with parameters µ = 6.466769 and σ2 = 0.1686227. We answer the following
questions with respect to this scheme:

1. For each discount level determine the size of damage below which it
is not worthwhile making a claim, assuming a three-year time horizon.
What are the mean and variance of a typical loss?

2. Assume the number of accidents an individual has in a year is a Pois-
son random variable with parameter 0.2. Find the matrix of one-step
transition probabilities for one-year movements in this NCD scheme.

3. If 20,000 policyholders all begin initially in E0, what would be the ex-
pected total premiums in year 2? Find the stationary distribution for
this NCD system.

In order to determine the threshold on damage for making a claim in Ex-
ample 6.3, we must consider the deductible of $150 as well as the difference in
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future premium payments that will be made if a claim is made. If the damage
incurred in an accident is represented by the random variable X, then the
insured will make a claim if this exceeds the deductible plus the difference
in additional premiums that must be paid in the next few years as a result
of making a claim (equivalently, X − 150 exceeds the additional cost of pre-
miums on making a claim). In determining such a threshold, we are again
assuming that the chance of another loss (in excess of the deductible $150)
being incurred in the next few years is negligible. Table 6.8 illustrates the
calculation of these thresholds for each of the discount classes.

TABLE 6.8

Premiums and thresholds (T) for making claims in Example 6.3.
Class E0 (0%) E1 (20%) E2 (30%) E3 (40%)
Year 0 600 480 420 360

C NC C NC C NC C NC
Year 1 600 480 600 420 480 360 420 360
Year 2 480 420 480 360 420 360 360 360
Year 3 420 360 420 360 360 360 360 360
Year 4 360 360 360 360 360 360 360 360

T 240+150=390 360+150=510 180+150=330 60+150=210

Given that the random loss X is lognormal with parameters µ = 6.466769
and σ2 = 0.1686227, it follows that

E(X) = eµ+σ2/2 = e6.466769+0.1686227/2 = 700

and
V ar(X) = e2µ+σ2

(eσ2
− 1) = 3002 = 90,000.

For someone in the discount class E0 (that is, with no discount), the inten-
sity rate for making a first claim is the rate for suffering a loss (0.2) multi-
plied by the conditional probability of making a claim having suffered a loss
(or P (X > 390) = 0.8886037). Another way of thinking about this is that
the number of accidents an individual has which result in damage in excess
of 390 is a Poisson process with rate parameter 0.2(0.8886037) = 0.1777207.
It follows that the transition probabilities from this class are given by p00 =
1 − e−0.1777207 = 0.1628238, p01 = 0.8371762, and p02 = p03 = 0. Similarly,
one may show that the first claim rates for individuals in classes E1, E2 and E3

are, respectively, 0.1428503, 0.1896040 and 0.1993602. Therefore the one-step
transition matrix for this system is given by

P =


0.1628238 0.8371762 0 0
0.1331162 0 0.8668838 0
0 0.1727134 0 0.8272866
0 0 0.1807452 0.8192548

 .
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Hence the probability distribution for the classes in year 2 is

p2 = (1, 0, 0, 0) ·P2 = (0.1379533, 0.1363122, 0.7257345, 0.0000000)

and the expected premiums in year 2 are

E(year 2 premiums) = 20,000[(0.1379533)600 + (0.1363122)480
+(0.7257345)420 + (0)360]

= 9,060,207.

Solving the Equation π = π ·P (and remembering that the components of
π add to one), we find that

π = (0.005454467, 0.03430349, 0.1721763, 0.7880658).

Expected premiums when stability has been reached are therefore equal to

E(premiums at stability) = 20,000 [(0.005454467)600 + (0.03430349)480
+(0.1721763)420 + (0.7880658)360]

= 7,515,122.

Note that this is considerably less than the expected premiums for year 2, but
this is not surprising as most of the policyholders will (in the limit) be in the
top discount level.

6.3.2 The claims rate process in an NCD system

Suppose that in an NCD system, accidents for individuals (in a given discount
level) occur as a Poisson process with rate parameter λ, and that a first claim
is made following an accident only if the loss X exceeds a threshold M . If
p = P (X > M), then it is correct to say that losses in excess of M are
occurring as a Poisson process with rate pλ, but usually not correct to say
that the claims process itself is Poisson with parameter pλ. This is because
once a first claim is made, then (depending on the transition rule) the rate
for the next claim may very well increase. For example, suppose the soft rule
is being used, and that there are no deductibles in effect. Once an individual
makes a claim in a given year (because of a loss in excess of M), then any
subsequent loss may as well be reported as a claim since the individual has
nothing further to lose. In such a situation, the rate for the first claim is
pλ (and the time to such a claim is [a censored] exponential distribution
with parameter pλ), but after such a first claim other claims will occur at
the increased rate of λ. The following example may illustrate some of these
points.

Example 6.4
An NCD scheme for motorists operates with three discount levels of 0%, 20%
and 30%. The full normal premium is $500, and the soft operating rule is
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used whereby if no claims are made in a given year the policyholder moves
up one discount category in the following year, while in the event of one or
more claims being made the policyholder moves back one discount level. A
deductible of $100 is also in effect, whereby the policyholder pays the first
$100 of any claim.

• What is the size of damage below which it is not worthwhile making a
claim at each level of discount, assuming policyholders have a two-year
time horizon?

• Assume the loss distribution for an accident is Pareto with parameters
α = 3, λ = 3200. For each discount level find the probability that, given
an accident occurs, a claim will be made (using again a two-year time
horizon).

• Assume all policyholders have the same underlying rate of 0.2 for sus-
taining accidents. What is the underlying transition matrix P appro-
priate for (one-year) movement between discount levels in this scheme?
Determine the stationary distribution for this NCD system, and estimate
the annual net profit (expected premiums – expected claims payable)
once stability has been reached if there are 10,000 policyholders.

Proceeding as before, one may determine the appropriate thresholds for
making a claim once a loss has been incurred, and these are given in Table
6.9. Hence the probability that a person in class E0 who has suffered a loss
X > 0 will make a claim is

P (X > 250 | X > 0, E0) =
(

3200
3200 + 250

)3

= 0.7979812.

In a similar way, one determines

P (X > 300 | X > 0, E1) = 0.7642682 and
P (X > 150 | X > 0, E2) = 0.8715966.

The Poisson rate parameter for an individual in class E0 to make a claim in
a given year is therefore 0.7979812(0.2) = 0.1595962, and similarly, they are
0.1528536 and 0.1743193 for individuals in classes E1 and E2, respectively.
Therefore the one-step transition matrix for this NCD system is given by

P =

0.1475121 0.8524879 0
0.1417447 0 0.8582553
0 0.1599714 0.8400286


and the stationary distribution is π = (0.02545758, 0.15310824, 0.82143419).

Assume now that stability has been reached, and let S = S0 + S1 + S2 be
the total amount of claims in a year, where Sj is the total claims from those
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TABLE 6.9

Premiums and thresholds (T) for making claims in
Example 6.4.

Class E0 (0%) E1 (20%) E2 (30%)
Year 0 500 400 350

C NC C NC C NC
Year 1 500 400 500 350 400 350
Year 2 400 350 400 350 350 350
Year 3 350 350 350 350 350 350

T 150+100=250 200+100=300 50+100=150

who are in discount class Ej for j = 0, 1, 2. Here S0 = Y 0
1 + · · ·+ Y 0

N0
, where

N0 is the (random) number of individuals in E0 and Y 0
i is the amount payable

to individual i. In the long run we expect about

E(N0) = 10,000 (0.02545758) .= 255

in discount class E0 in a given year, and similarly, approximately 1531 and
8214 in classes E1 and E2, respectively.

Note that Y 0
i will be positive only if the time T 0

i until the first loss in
excess of $250 encountered by individual i (in class E0) occurs in the given
year (that is, T 0

i < 1), which happens with probability 0.1475121. If, for
example, T 0

i = t < 1, then Y 0
i will be the excess over $100 of the first loss

above $250, plus the excess above $100 for each loss suffered in the interval
(t, 1]. Losses encountered in the time period (t, 1] which do not exceed $100
are of course totally absorbed by the insured.

A Pareto random variable X with parameters α and λ has the property that
X −M | [X > M ] ∼ Pareto(α, λ+M). Hence given that T 0

i = t < 1, Y 0
i will

be composed of two parts, the first of which is the sum of 150 plus a Pareto
(3, 3200 + 250) random variable. The second part is a compound Poisson
random variable with Poisson parameter (1− t)(0.2)(3200/(3200+100))3 and
typical component a Pareto (3, 3200 + 100) random variable. Therefore

E(Y 0
i | T 0

i = t < 1) = 150 + 3450/(3− 1)
+(0.2) (1− t) (3200/3300)3 [3300/(3− 1)]

= 1875 + 300.8999(1− t)

and hence using λ0 = 0.7979812(0.2) = 0.1595962,

E(Y 0
i ) =

∫ 1

0

E(Y 0
i | T 0

i = t) fT 0
i
(t) dt

=
∫ 1

0

[1875 + 300.8999(1− t)]λ0 e
−λ0tdt

= (1875 + 300.8999) (1− e−λ0)− 300.8999
∫ 1

0

λ0te
−λ0tdt
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= 320.9715− 300.8999 [1− e−λ0 − λ0e
−λ0 ]/λ0

= 320.9715− 300.8999(0.07179501)
= $299.3684.

Therefore E(S0) = 10,000 (0.02545758) 299.3684 = $76,212.

Similarly, using λ1 = 0.2(3200/3500)3 = 0.1528536, one finds

E(Y 1
i ) =

∫ 1

0

[1950 + 300.8999(1− t)]λ1e
−λ1tdt

= 319.0531− 300.8999[1− e−λ1 − λ1e
−λ1 ]/λ1

= $298.2707 , and
E(S1) = 10,000 (0.15310824) 298.2707 = $456,677.

Likewise, using λ2 = 0.2(3200/3350)3 = 0.1743193, one finds

E(Y 2
i ) = 300.7172 and E(S2) = $2,470,194.

Therefore in the long run, expected annual claims are

E(S) = E(S0) +E(S1) +E(S2) = 76,212 + 456,677 + 2,470,194 = $3,003,083.

Since expected annual premiums (in the long run) are

10,000 [500 (0.02545758 + 0.15310824(0.8) + 0.82143419(0.7))] = 3,614,740,

the expected annual net profit once stability has been reached is

3,614,740− E(S) = 3,614,740− 3,003,083 = $611,658

and hence premiums exceed expected claims by approximately 20%.

6.3.2.1 The number of claims made by an individual

Assume that accidents to a policyholder occur according to a Poisson process
with rate parameter λ, and that the first claim in a year is only made when a
loss suffered in an accident exceeds a threshold M (which occurs with proba-
bility p). Furthermore, assume that the soft rule for transition between classes
is in effect and hence any loss suffered during the rest of the year is reported
to the insurance company. The time T1 to the first claim therefore has an
exponential distribution with parameter pλ. Letting CN be the random vari-
able representing the number of claims made by an individual policyholder
in a one-year time period, then clearly P (CN = 0) = e−pλ. We derive the
expression for P (CN = 1) as follows:

P (CN = 1) =
∫ 1

0

pλ e−pλt [P (no further accidents in [t, 1]) ] dt
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=
∫ 1

0

pλ e−pλt

[
(λ(1− t))0

0!
e−λ(1−t)

]
dt

=
p

1− p

[
e−pλ − e−λ

]
=

p

1− p

[
P (CN = 0)− e−λ

]
.

Similarly,

P (CN = 2) =
∫ 1

0

pλ e−pλt

[
(λ(1− t))1

1!
e−λ(1−t)

]
dt

= pλ e−λ

∫ 1

0

λ(1− t) e−λt(p−1) dt

=
1

1− p

[
P (CN = 1)− pλ e−λ

]
and more generally for k ≥ 1

P (CN = k + 1) =
∫ 1

0

pλ e−pλt

[
(λ(1− t))k

k!
e−λ(1−t)

]
dt

=
1

1− p

[
P (CN = k)− p

λk

k!
e−λ

]
.

6.4 Reducing heterogeneity with NCD schemes

One of the objectives of using NCD systems is to make those with high claim
rates pay appropriately in the form of higher premiums. Although NCD sys-
tems do punish individuals who make claims in the form of reduced premium
discounts, they are not as effective as one might expect or like them to be. In
the following example we compare the premium income from two groups of
(relatively speaking) good and bad drivers.

Example 6.5

Again consider the NCD system introduced in Example 6.1, where the dis-
count levels are E0 (no discount), E1 (20% discount) and E2 (40% discount),
and the full premium is $500. The transition rule is to drop back one discount
level if one claim is made, and to go back to paying the full premium if more
than one claim is made. Let us assume that we have 10,000 relatively good
drivers in this scheme who have the one-step transition matrix PG given below
(and in Equation(6.1)). Assume also however that we have another group of
10,000 relatively bad drivers who are (in some sense) twice as likely to make
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claims. More precisely, let us assume that for one of these drivers, the proba-
bility of one claim in a year is 0.4 while the probability of two or more claims
is 0.2. It follows that the one-step matrix PB of transition probabilities for
these bad drivers and that for the good drivers are given by:

PG =

0.3 0.7 0.0
0.3 0.0 0.7
0.1 0.2 0.7

 and PB =

0.6 0.4 0.0
0.6 0.0 0.4
0.2 0.4 0.4

 .

TABLE 6.10

Expected premium income from two
groups of good and bad drivers.

Year Good drivers Bad drivers
0 5,000,000 5,000,000
1 4,300,000 4,600,000
2 3,810,000 4,440,000
3 3,712,000 4,376,000
4 3,643,400 4,350,400
8 3,616,811 4,333,770
16 3,616,279 4,333,334
32 3,616,279 4,333,334
∞ 3,616,279 4,333,333

If we assume that all drivers start in class E0 in year 0, then Table 6.10 gives
the annual expected premium income from the two groups as the numbers in
the different classes stabilize. The stationary distributions for the two groups
are, respectively,

πG = (0.1860465, 0.2441860, 0.5697674) and
πB = (0.5238095, 0.2857143, 0.1904762).

The results about premium incomes for the two groups are disappointing
in that even after numbers stabilize there is relatively little difference in pre-
mium income between the good and bad drivers. In fact, the limiting ratio of
premium income from the two groups is 1.2, and consequently the bad drivers
are only paying 20% more than the good drivers in the long run!
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6.5 Problems

1. If Richard had joined the NCD system of Example 6.2 where the soft
transition rule was in force, what premium would he have paid on the
first day of July 2002? What would the answer be if the severe rule had
been used? In each case, draw a diagram to illustrate the transition
through the discount classes.

2. Using the one-step transition matrix for the NCD system of Example 6.1,
what is the probability p3

02 of a person who is presently on no discount
getting the maximum discount three years from now? If one is presently
paying 80% of the full premium, what is the probability that one will
be doing the same six years hence?

3. Use a basic text editor to make a text file as follows, and “source it”
or bring it into R. (Note: Any line in a text file beginning with # is
ignored by R.) The text file below will create the matrix of transition
probabilities P in Example 6.1. What is P8?

# NCD Example 1
ex1<-c(0.3,0.7,0, 0.3, 0,0.7, 0.1,0.2,0.7)
P1<-matrix(ex1,ncol=3,byrow=T)
P2<-P1%*%P1
P4<-P2%*%P2
P8<-P4%*%P4

4. Calculate a table similar to Table 6.3 for Example 6.1 when all 2000
policyholders start with no discount with a (pure) premium of $600.

5. Let us assume for the NCD system of Example 6.2 that for an insured
individual, the probabilities of making 0, 1, and > 1 claims in a year are,
respectively, 0.7, 0.2 and 0.1. Then the one-step transition matrix for
this system (two steps back with one claim, and back to E0 with more
than one claim) is:

P =


0.3 0.7 0 0 0 0
0.3 0 0.7 0 0 0
0.3 0 0 0.7 0 0
0.1 0.2 0 0 0.7 0
0.1 0 0.2 0 0 0.7
0.1 0 0 0.2 0 0.7

 .

Determine the equilibrium distribution for this NCD system.
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6. The NCD scheme in Company B has three levels – 0%, 15% and 30%.
The rules for moving between discount levels are: (a) in a year with no
claims one moves up a discount level (or stays at 30%), (b) if one claim
is made in a year, one steps back one discount level in the following
year (or stays at 0%) and otherwise, (c) one goes back to having no
discount. It is believed that policyholders at the various discount levels
have different Poisson claim rates which are, respectively, (0.5, 0.4, 0.3)
for the respective discount levels (0%, 15%, 30%). Determine the tran-
sition matrix for movement between the discount levels, and find the
steady state probabilities for being in the respective discount states.

7. Verify in Example 6.4 that E(S2) = $2,470,194.

8. An NCD scheme for motorists operates with three levels of discount:
E0(0%), E1(30%) and E2(50%). The normal full premium is $800. The
soft transition rule applies whereby an individual moves to the next
higher discount level (or stays at 50% discount) following a year with no
claim, and when one or more claims are made in a year the individual
moves back to the next lower discount level (or stays in E0). The loss
distribution appropriate for losses suffered by individuals in this scheme
is a Weibull random variable with parameters γ = 2 and c = 1/600,000.

(a) For each discount level, determine the size of a loss below which it
is not worthwhile making a claim (given a two-year time horizon
during which no further loss is suffered).

(b) Losses are suffered by individuals at a Poisson rate of λ = 0.3 per
year. For each discount level determine the Poisson rate of making
a claim.

(c) Determine the basic transition probability matrix for this scheme,
and find the long-run probabilities of being in the three states.

(d) What is the expected annual premium income for a group of 20,000
policyholders once stability has been reached?

9. Company A uses an NCD scheme with the four discount levels of E0 =
0%, E20 = 20%, E40 = 40% and E50 = 50%. The rules for movement
between discount levels are: (a) in a year with no claims, one moves
up a discount level (or stays at 50%), and (b) on making one or more
claims in a year if one is in discount level E0 or E20 then next year the
individual will be in E0, while if in E40 or E50 then one goes to discount
level E20 next year. The loss suffered by an insured when an accident
occurs is modeled by an exponential distribution with mean 2000. When
an accident occurs an insured will only make a claim if the size of the
loss exceeds the total extra premium payment that would be paid over
the next three years (assuming no further accidents). The normal full
premium is 900. For each discount level calculate the smallest loss an
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insured will incur before making a claim, and the probability that an
insured will make a claim given that a (first) loss is suffered.

10. An NCD scheme for motorists operates with three discount levels of
0%, 20% and 30%. The full normal premium is $500, and the operating
rule is that if no claims are made in a given year the policyholder moves
up one discount category in the following year, while in the event of one
or more claims being made the policyholder moves back one discount
level. A deductible of $100 is also in effect, whereby the policyholder
pays the first $100 of any claim.

(a) Calculate the size of damage below which it is not worthwhile mak-
ing a claim at each level of discount, assuming policyholders have
a two-year time horizon.

(b) Assume the damage (loss) distribution for an accident is Pareto
with parameters α = 3, λ = 800. For each discount level find
the probability that given an accident occurs a claim will be made
(using again a two-year time horizon).

(c) Assume all policyholders have the same underlying rate of 0.3 for
sustaining accidents. Find the underlying transition matrix P ap-
propriate for (one-year) movement between discount levels for this
portfolio, taking into account calculations in (b).

11. A car insurance company operates a no claims discount scheme with
three levels of discount: 0%, 20% and 40%. A policyholder who makes
no claim in a given year moves to the next (higher) level of discount in
the following year – or remains at the top level of discount. If one or
more claims are made in a given year, the policyholder drops one level
of discount in the following year (or remains with 0% discount). Let us
assume that the accident rate is 0.1 for each individual holding a policy.
The full normal premium is $400 per annum and the random damage
X on a car in an accident is uniformly distributed on [0, 1000].

Suppose that a policyholder who has an accident only decides to make a
claim if the damage incurred exceeds the subsequent increase in premium
payments that he will pay over the next two years as a result of making
the claim. His calculations are made assuming that no more accidents
will occur over the next few years. For each level of discount determine
the probability that a policyholder will make a claim in a given year.
Estimate the proportion of policyholders in each of the discount levels
once stability has been reached.

12. An NCD motor insurance scheme operates with the four discount levels
(states) of 0%, 20%, 40% and 60%. If one claim is made in a given year,
the individual drops two levels of discount (or stays at 0% discount) in
the following year. If no claim is made then the policyholder moves up
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one level of discount for the following year (or stays at 60% discount).
Assume the probability of one accident in a year is 0.1 for any individual,
and that we can ignore the possibility of two or more accidents by an
individual in a year. The random loss on occurrence of an accident is
modeled by a Pareto random variable with parameters λ = 2400 and
α = 3. Assume a claim is made following an accident only when the
damage X exceeds the additional premiums the individual would have
to pay (assuming a three-year horizon without additional claims). The
normal full premium is $800.

(a) For each level of discount, determine the minimum damage that
must occur before a claim is made.

(b) Determine the matrix of one-step transition probabilities for this
NCD Markov chain.

(c) If 10,000 policyholders have just paid the full premium for the year
2007, how much premium income would one expect from this group
in the year 2009?

(d) How much premium income would be expected from those on the
maximum discount level in the year 2010?

13. An NCD scheme for automobile insurance has three levels of discount:
0%, 30% and 50%. A policyholder who makes no claim in a given year
moves to the next higher level of discount (if possible). When a claim is
made in a given year the policyholder drops one level of discount in the
following year (or stays at 0% discount). Assume that the chances of one
accident in a year is 0.3 for any policyholder, and that we can ignore the
possibility of more than one accident. The full premium is $500. The
cost of an accident X is a random variable with density function

f(x) = 2(400)2/(400 + x)3, for x > 0.

We assume that if the policyholder has an accident, a claim is made
only if the damage done exceeds the subsequent increase in premiums
that would be paid over the next two years.

(a) For each level of discount, calculate the probability that a policy-
holder will actually make a claim in a given year.

(b) Suppose there are 20,000 policyholders, all of whom initially start
with no bonus. Determine the expected numbers in each of the
discount levels once stability has been reached.

(c) Assuming all 20,000 policyholders have just paid full premiums,
estimate the total premium income for the next year and compare
it with the total expected premium once stability has been reached.
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14. An NCD scheme for drivers in a town has three categories of discount
levels: E0 = 0%, E1 = 35%, E2 = 70%. If a driver policyholder makes
at least one claim during a year he/she moves down a discount level (or
stays in E0) and otherwise moves up one level (or stays at E2). The
probability that a policyholder makes one or more claims in a year varies
with the discount level as follows: For those in E0 it is p, for those in
E1 it is 0.7p, while for those in E2 it is 0.5p.

(a) Write down the transition matrix for this NCD scheme in terms of
p.

(b) Determine the steady state distribution for this NCD scheme in
terms of p.

(c) Calculate the average premium payment per policyholder once a
steady state has been reached in terms of p and M where M is the
full premium (premium for someone starting in state E0). Suppose
that for the better drivers in Group A the value of p = 0.1 is
appropriate, while that for those in Group B is p = 0.2. It is
decided to use a full premium value of MA = 900 for those in
Group A. What should the value of MB be for policyholders in
Group B if it is desired that the average premium for Group B
policyholders is to be 40% more than that for Group A? Comment
on your answer.

15. A no claim discount scheme has three levels of discount: 0%, 30% and
50%. The rule for movement between discount levels is where one moves
up a discount level (or stays at the 50% discount level) if no claims are
made in a year, moves back one discount level following one claim, and
returns to the 0% discount level if two or more claims are made in a
year. The full premium for a year is $600. The loss distribution for
damage is modeled by a lognormal random variable with mean $1200
and standard deviation $800. Damage resulting from an accident turns
into a (first) claim for a year only if it exceeds the total extra premiums
a person would have to pay over the next two years. The accident rate
for any individual is assumed to be λ = 0.25.

(a) For each discount level, determine the smallest damage loss that
will lead to a claim being made.

(b) For each discount level, determine the (first) claim incidence rate
based on the calculations in part (a).

(c) This year there are 10,000 policyholders, half of whom paid the
full premium and 25% of whom got a 30% discount. How many
policyholders would one expect to get the full discount next year?

(d) What is the total expected premium income for next year?
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16. An NCD scheme operates with four levels of discount: 0%, 20%, 30%
and 40%. The rule for movement between discount levels is that one
moves up one step (discount level) next year if no claims are made this
year, and if one or more claims are made in a year then one drops to the
next lower discount level in the following year (or stays at 0% discount).
The full premium for an individual is $600 per year. When an accident
occurs, the appropriate loss distributionX is lognormal with parameters
µ = 5.8798927 and σ2 = 0.2231435.

(a) For each discount level determine the size of damage below which
it is not worthwhile making a claim, assuming a three-year time
horizon. What are the mean and variance of a typical amount of
damage?

(b) For each level of discount, determine the probability that a claim
will be made (assuming a three-year time horizon).

(c) Assume the number of accidents an individual has in a year is
a Poisson random variable with parameter 0.1. Find the matrix
of transition probabilities for one-year movements in this NCD
scheme.

17. Accidents for an individual in an NCD scheme occur at the (Poisson)
rate of λ per year. The first accident in a year (if it occurs) will lead
to a claim only if the damage incurred exceeds m, and this happens
with probability p = P (X > m). Assuming the soft transition rule is in
effect, any accident subsequent to the first claim will be reported as a
claim in any given year. If CN is the random variable representing the
number of claims for such an individual in a year, show that

E(CN ) = λ− 1− p

p

[
1− e−pλ

]
= λ− 1− p

p
P (CN ≥ 1).

What would E(CN ) be if λ = 0.3, the loss distribution for an accident
is exponential with mean 1200 and the threshold for the first claim is
m = 800?
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Generalized Linear Models

7.1 Introduction to linear and generalized linear models

In 1972, Nelder and Wedderburn developed a theory of generalized linear
models (GLMs) which unified much of the existing theory of linear model-
ing, and broadened its scope to a wide class of distributions. In particular,
the theory encompasses the class of logit and probit models, which are useful
models developed for handling binomial data, as well as Poisson regression
and Poisson log-linear models for contingency table analysis. An important
contribution to the theory of GLMs is their general iterated least squares al-
gorithm for finding the maximum likelihood estimates of the parameters in
these models. The introduction of generalized linear models has had a very
significant impact on practical modeling in a wide variety of areas, particu-
larly with the implementation of procedures for building models in statistical
software such as GLIM, Genstat, S-Plus and R, SAS, Stata, Systat and SPSS.
In actuarial science alone the theory has been used to model problems dealing
with premium rating, mortality, multiple state models and claims reserving.

This chapter provides a brief introduction to generalized linear models.
An excellent and thorough treatment of the topic is given in the 2nd edition
of Generalized Linear Models by McCullagh and Nelder [41]. Dobson’s 2nd

edition of An Introduction to Generalized Linear Models [22] provides a very
good but less technical introduction to the subject. For a good overview of
the subject, the chapter by Firth [26] is well worth reading, and the text
by Pawitan [49] gives interesting insight into modeling relationships more
generally (but in particular by GLM). Haberman and Renshaw [27] give an
interesting review of the applications of generalized linear models in actuarial
science.

Modeling relationships between observations (responses) and variables is
the essence of most statistical research and analysis. How is the incidence of
lung cancer influenced by age, gender, smoking, diet and other variables? Are
the numbers of automobile claims made by a driver related to age, education,
gender, type of vehicle, engine size and daily usage? In what way is the size
of an employer liability claim related to the personal characteristics of the
employee (age, gender, salary) and the working environment (safety standards,
hours of work, promotional prospects)? Constructing interpretable models for

221
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connecting (or linking) such responses to variables (which may be of a nominal,
ordinal or interval nature) can often give added insight into the complexity
of the relationship which may often be hidden in a huge amount of data.
Strictly speaking, as many statisticians will admit (see, for example, Box [8]),
all models are wrong – although some can be quite useful. Parsimony is an
aspect of modeling which is highly desirable. Often a simple model with fewer
explanatory variables is more useful (or parsimonious) than a complicated one
which lacks intuition and is harder to interpret.

In the classical linear model, a random response Y is modeled via a rela-
tionship of the form

Y = xTβββ + ε, (7.1)

where βββ is a vector of unknown parameters, x is a vector of known explanatory
variables and ε is an error term. Two fundamental aspects of such a model
are the linear dependence of the response on the unknown parameters, and
the additive error structure. Often one assumes that E(ε) = 0 and Var(ε)
is constant, in which case it follows that µ = E(Y ) = xTβββ. In the classical
linear model the mean of the response is a linear function of the explanatory
variables. In particular if yi is the ith response corresponding to the vector
of known explanatory variables (or covariates) xT

i = (xi1, . . . , xip), then the
model predicted value for yi (using the hat notation for an estimate) is given
by

ŷi = β̂1xi1 + · · ·+ β̂pxip ≡ η̂i.

Such a linear relationship between the mean µi of Yi and the linear predictor ηi

is both mathematically appealing and often readily interpretable, but there
are many situations where such a linear connection or link may be either
inappropriate or impossible.

If the unknown parameters βββ are allowed to vary freely, then the linear
predictors ηi may in theory take real values outside the range of the response
variable of interest. For example, if the response Y is a probability or a
proportion, then the mean value of Y will be restricted to the unit interval.
In other cases, the response Y may be positive (for example, when modeling
counts) or restricted to a finite interval.

There are two somewhat natural methods to try, in order to overcome such
a problem. One possibility is to transform the response Y with a function g
and use linear modeling on g(Y ). With this approach, one is suggesting that
the mean of a response Yi is of the form:

E(g(Yi)) =
p∑

j=1

βjxij .

For example, the log function has been extensively used in various applications
to transform data to an approximate normal (response) variable. In insurance
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the log transformation is often applied to claim size data, due to the inherent
nature of claims to be both skewed and positive. Another approach to the
problem is to use a transformation g to describe the relationship between the
mean µ of Y , and linear combinations of the explanatory variables. In this
case, we are linking the mean µi of an observation Yi through a functional
transformation g whereby

g(E(Yi)) = g(µi) =
p∑

j=1

βjxij .

This approach is the essence of generalized linear modeling.
Logistic regression is a good example of a generalized linear model which

is not a linear model in the classic sense. Suppose we are interested in the
proportion πx of insured male drivers of age x who will make an accident claim
in the coming year. Letting Yx be the sample proportion of insured drivers of
age x who make a claim, then it is clear that the mean value E(Yx) = πx is
restricted in value to the interval [0, 1]. To model the proportion πx as a linear
function of the form πx = β0+β1 x over the relevant age domain is usually too
restrictive and inappropriate. That is, as x varies, πx = β0 + β1 x will often
take values outside of the interval [0, 1], and hence may not be interpretable
as proportions (or probabilities). The logit of a probability or proportion π is
the logarithm of the odds ratio π/(1− π), that is, logit(π) = log [π/(1− π)],
and this is also referred to as the logistic function. Note that logit(π) is an
increasing continuously differentiable function from (0, 1) onto the real line R.
In a linear logistic (logit, or logistic regression) model, one models logit (π) as
a linear combination of appropriate explanatory variables. In our example, the
link function g between the mean µx = πx = E(Yx) and the linear predictor
ηx = β0 + β1x, might be given by

g(πx) = logit(πx) = log
πx

1− πx
= β0 + β1x = ηx,

or πx =
exp(β0 + β1x)

1 + exp(β0 + β1x)
=

exp(ηx)
1 + exp(ηx)

.

Early uses of linear logistic models were in bioassay experiments and the
analysis of survey data, but are now a common tool in many disciplines where
proportional data is of interest. For example, we might consider a logit model
if we are interested in modeling how the probability of an individual developing
a critical illness (or having a car accident) is related to age, gender and various
other health or risk factors. In mortality studies, the initial rate of mortality
qx at age x has been modeled by logistic regression (see [27]).

The Poisson distribution with mean µ is a basic and important distribution
for count data, but has the well-known property that the mean and variance
are the same. Therefore if the mean of a Poisson response variable depends
linearly on a vector x of known explanatory variables, then its variance is
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nonconstant. Traditionally, one may attempt to model this situation via the
classical approach to linear modeling by either transforming the response vari-
able, or by using a weighted least squares approach where the weights are
estimated (via iterated methods) from the data.

The generalized linear model approach would begin by noting that if Y is
“Poisson” with mean µ, then although µ is positive it may not be reasonable
to express it as a linear combination of predictor variables. One may, however,
use a (multiplicative) log-linear model for the Poisson distribution, where we
model

g(µ) = logµ = η = xTβββ, or equivalently, µ = eη.

Here the function linking the mean E(Y ) = µ to the linear predictor η is the
log function, which is a continuously differentiable function from (0,∞) onto
the real line R. This example of a generalized linear model is also known as
Poisson (linear) regression. Poisson regression can be used when we want to
study how the number of claims made by an insured individual depends on
various explanatory variables or predictors, or how the number of accidents
at an intersection depends on weather, traffic intensity, hour of the day or
day of the week. In the study of mortality, the force of mortality µx might be
modeled via Poisson regression.

The method of probit analysis is one of the first examples of a generalized
linear model that is not a linear model in the classical sense. It has its origins in
work of Bliss [4] in 1935 in bioassay, where mortality is modeled on dose level.
Suppose we are interested in the proportion Yx of subjects that survive a drug
or toxin given at a known dose level x (which is often measured in logarithmic
units), and let πx = E(Yx) denote the mean value of Yx. In the probit
model, one uses the inverse Φ−1 of the cumulative distribution function of the
standard normal distribution as a link between the mean πx = µx = E(Yx)
and the linear predictor ηx = β0 + β1x, whereby

g(πx) = Φ−1(πx) = ηx, or πx = Φ(β0 + β1x) = Φ(ηx).

Note that no matter what the values of β0 and β1 are, Φ(β0 + β1x) will still
be a number between 0 and 1 – that is a probability. The function g = Φ−1

is a continuously differentiable 1− 1 mapping of (0, 1) onto the real line R.
This brief introduction indicates how the theory of generalized linear models

extends the classical linear model and also includes the logit, Poisson and
probit models as special cases. The following points summarize some of the
main ways in which this theory generalizes the classic approach to linear
modeling:

• The relationship between the mean µi of a random observation Yi and
other explanatory variables xi1, . . . , xip may be more general than that
in the linear model. Instead of assuming that µi = β1xi1 + · · · + βpxip

(that is, the mean is a linear combination of the predictor variables),
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one assumes there is a function g (called the link function) connecting
the mean µi with the linear predictor ηi = β1xi1 + . . .+ βpxip through
g(µi) = ηi.

• The variance of an observation may depend on the mean. In fact, we
will see that V ar(Yi) = (φ/Ai)V (µi), where Ai is a known prior weight
and φ is a (often a nuisance) scale parameter independent of i. V (µ)
is called the variance function, and it shows how the variance of an
observation depends on its mean.

• The distribution of the response variable Y can be any member of the
so-called exponential family of distributions. This family includes in
particular the normal, Poisson, binomial and gamma distributions.

Our development of the generalized linear model begins with a review in
Section 7.2 of normal linear models. Generalized linear models extend the
class of linear models to a class of distributions known as exponential families,
and these, together with the structural aspects of a GLM such as link functions
and linear predictors are discussed in Section 7.3. The use of deviance as a
tool in modeling, as well as residual analysis and goodness-of-fit, are discussed
in Section 7.4. The reader should be aware that there are many important
extensions of generalized linear models which we do not treat in this text,
including generalized linear mixed models (GLMM). Such generalized linear
models include random (in addition to what are called fixed) effects in the
linear predictor.

7.2 Multiple linear regression and the normal model

In the classical normal linear model, one assumes that Y = (Y1, . . . , Yn) are
independent normal random variables, where Yi ∼ N(µi, σ

2) and

E(Yi) = µi = xT
i βββ.

One traditionally writes this model in the form

Y = Xβββ + εεε,

where

Y =

 Y1

...
Yn

 , X =

xT
1
...

xT
n

 , βββ =

β1

...
βp

 , εεε =

 ε1...
εn


and the error terms εi are independent N(0, σ2) random variables. An obser-
vation Yi is therefore split into a systematic component denoted by xT

i βββ =
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β1xi1 + · · ·+ βpxip, and a random component εi. The systematic component
(ηi = xT

i βββ) is a linear predictor for E(Yi). X is usually referred to as the
n× p design matrix, where n is the number of random observations and p is
the number of explanatory variables.

In this setting, the p explanatory (regressor, predictor or independent) vari-
ables may be categorical, continuous or a combination of both, and we refer
to this class of models as the general linear model. If there is a constant in
the linear model, then the first column of the design matrix X consists of all
1′s. The most basic such model is the simple linear regression model where

Yi = β1 + β2xi + εi.

The term analysis of variance or ANOVA is often used to describe a model
where the explanatory variables are all categorical. Usually, one wants to com-
pare groups defined by specifying different levels of these categorical variables
or factors. For example, we might want to compare the log of a claim size
(assuming claims are lognormally distributed) with respect to the gender and
home address of a motorist. When there is a mixture of continuous and cate-
gorical variables in the normal linear model, one often uses the term analysis
of covariance or ANCOVA to describe it. In such a model, one is interested in
comparing groups defined by different levels of categorical variables, but also
one wants to incorporate the possibility that the response within a group may
need adjustment for certain covariates or continuous variables. In Example
7.1, an ANCOVA model for degree mark is investigated.

In a normal linear model, the mean E(Yi) = µi is modeled as a linear func-
tion of the explanatory variables with coefficients βββ. The (variance) parameter
σ2 is often referred to as a nuisance parameter, but of course may be useful
in making inferences about µi. For a sample of observations y, the likelihood
function takes the form

L(βββ, σ2;y) =
(

1
2πσ2

)n/2

exp {− 1
2σ2

n∑
i=1

(yi − xT
i βββ)2}.

It is well known that the maximum likelihood estimates of βββ and σ2 are given
by

β̂ββ = (XT X)−1XT y and

σ̂2 =
1
n

n∑
i=1

(yi − xT
i β̂ββ)2.

Usually, in the normal linear model, estimates of the parameters βββ are ob-
tained by the least squares method, that is, by minimizing

n∑
i=1

(yi − xT
i βββ)2,
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with respect to βββ. This gives results identical to those using the method of
maximum likelihood, and these estimators are unbiased. In estimating σ2, one
normally uses a divisor of (n− p) (the number of degrees of freedom) instead
of n. The resulting estimator is an unbiased estimator of σ2, and it is usually
called the mean residual sum of squares, or the mean error sum of squares. The
celebrated Gauss–Markov theorem states that the least squares (or maximum
likelihood) estimates are the (BLUE) Best Linear (in the observations yi)
Unbiased Estimates of βββ.

Often there are many possible explanatory variables that may be included
in a model, and so it is important to identify a subset which explains a good
amount of the variation in the response variable, yet leads to a parsimonious
model. In multiple linear regression, one can make use of step-wise regression
methods to identify suitable variables. In essence, one uses an analysis of
variance table for a potential model, deciding on the basis of mean sums of
squares and the χ2 probability distribution whether or not a certain candi-
date variable (or set of variables) should be added to an existing model. In
generalized linear models, however, one makes use of the concept of deviance
to decide on which variables should be included in a model. The deviance
function in GLM is one of the most important applications of the theory of
likelihood through the use of the likelihood ratio statistic. The deviance may
also be used to measure the lack-of-fit of a model.

Residual analysis is of course a crucial tool in modeling. If µ̂i is the fitted
value for a given model corresponding to xT

i , then the ith residual is given by

ε̂i = yi − xT
i β̂ββ = yi − µ̂i.

Unusual observations generally have large residuals, but it is often informative
to standardize residuals in order to identify trends or patterns which might
be of interest or concern. The usual ith standardized residual is given by

ri =
ε̂i

σ̂
√

(1− hii)
,

where hii is the ith diagonal element in the so-called hat matrix X(XTX)−1XT.
Another commonly used standardized residual is the studentized residual (see,
for example, [23]).

In Example 7.1, a normal linear model for final degree mark for university
students in an actuarial program is analyzed.

Example 7.1 Final university degree mark
A study was undertaken to develop a model to predict the final degree mark
of university students in an actuarial program in Ireland on the basis of infor-
mation available on their entry into the program (Ferguson [25]). Final degree
performance can be measured in different ways, but for the purposes of this
study attention centers on the overall degree mark Y (which is expressed as
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a % based on a weighted average of many course results obtained in the pro-
gram). Table 7.1 shows how overall degree mark (%) is related to the class of
degree obtained.

TABLE 7.1

University degree classification by overall degree mark (%).
Class of degree Pass Third Lower second Upper second First

P III II.2 II.1 I
Degree mark ( %) [40, 50) [50, 55) [55, 62) [62, 70) ≥ 70

Entrance to the program is very competitive, and most students would
expect to obtain a II.1 degree or higher. Marks over 70% are considered
excellent (First class). Marks over 80% are infrequent and those over 90%
rare. Extensive data were available on the 197 students who had already
completed the program over a six-year period, including information on the
following:

• gender (male or female)

• age (age in years at entry, ranging from 17− 20)

• points (entrance exam results on a scale of 0− 640)

• home (home address categorized as: Dublin, Ireland excluding Dublin
(Non Dublin), or not Ireland (Other))

Figure 7.1 gives a basic plot of degree % by points at entry for the various
categories of home. Most students have done reasonably well, with few Dublin
students getting a % under 60.

On the basis that exam marks are often treated as normal variates, together
with the fact that the response variable Y for each student is a weighted
average of many exam scores, it was decided to try and fit a normal linear
model for Y with respect to the four possible explanatory variables above. The
variables age and points are continuous (and might be called covariates), while
the variables gender and home are factors or categorical variables. Although
the variable points can in theory take values anywhere in the range [0, 640],
because of the high quality of students the actual range was [505, 640]. The
factor gender has two levels (male and female), while the factor home has
three. After an analysis of several normal linear models, it was decided to use
a model of the form:

E(Y ) = αhome + β1 xpoints + β2 x
2
points + β3 xage, (7.2)

where αhome takes different values for the various levels of the variable home,
xpoints is the number of points on entry, and xage is age at entry. The covariate
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Final degree results and points at entry.
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xpoints enters the model as both a linear and quadratic predictor. Given
knowledge of the variables xpoints and xage , there was no evidence to support
using gender as an explanatory variable (gender was not significant). This
result was not surprising, yet for various cultural reasons in the not too distant
past in Ireland, females might not have been expected to perform on an equal
basis in areas with a high mathematical content. No interaction terms were
deemed appropriate for this model.

Using least squares (or equivalently, in this case the method of maximum
likelihood), the following estimates were obtained for the relevant parameters:

α̂D = 805.717737, α̂ND = 802.66950, α̂O = 794.99950,

β̂1 = −2.484114, β̂2 = 0.00222703, β̂3 = −2.5532705.

These estimates were obtained using the linear models function lm in the
statistical package R with the data on each of the 197 students. Similar
(identical) results should be obtained from other good statistical packages.
For this model, the linear predictor η takes the form

E(Y ) = η = αhome + β1 xpoints + β2 x
2
points + β3 xage

and we can use η to predict the overall degree mark for students with particular
characteristics. In other words, the connection or link between the linear
predictor η and the expected response E(Y ) is the identity link – that is,
E(Y ) = η in this normal situation. With our model for degree performance,
we have a linear predictor for an 17-year-old student from Dublin entering on
590 points of

η̂ = 805.717737− 2.484114 (590) + 0.00222703 (590)2 − 2.5532705 (17)
= 71.91.

In particular, for such a student E(Y ) = 71.91%, which, if obtained, would
result in a First-class (I) degree. A plot of the residuals by fitted values (given
in Figure 7.2) supports a reasonable fit for the model.

7.3 The structure of generalized linear models

We now elaborate on many of the structural aspects of generalized linear
models. We define and give examples of exponential families of distributions,
discuss link functions and linear predictors. We also discuss factors and co-
variates, as well as interactions between possible predictor variables.
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Residuals for degree mark with model (7.2).



232 GENERALIZED LINEAR MODELS

7.3.1 Exponential families

The concept of an exponential family is fundamental to the theory of gener-
alized linear models, but unfortunately the notation used varies considerably.
To a large extent the notation used here follows that used by Venables and
Ripley [57] and in the statistical packages R and S.

Many of the most useful one-parameter distributions used in modeling be-
long to what is called the general exponential family. The random variable Y
has a distribution belonging to a one-parameter exponential family if it has a
density (or probability) function fY which can be expressed in the form

fY (y; θ, φ) = exp (A [yθ − γ(θ)]/φ + τ(y, φ/A) ), (7.3)

or equivalently, the log of its density (log-likelihood function) l(θ) can be
expressed as

l(θ) = logL(θ, φ; y) = log fY (y; θ, φ) = A [y θ−γ(θ)]/φ+τ(y, φ/A). (7.4)

The parameter θ is referred to as the natural (or canonical) parameter, and
(as we shall see) is related to the mean through E(Y ) ≡ µ = γ′(θ). φ is a scale
or dispersion parameter which may be known, and is related to the variance
of Y through V ar(Y ) = φγ′′(θ)/A . This allows the variance of Y to vary
freely from the mean (µ = γ′(θ)) with the dispersion parameter φ, and this is
an important property of exponential families in generalized linear modeling.
γ and τ are known functions, and A is a known prior weight.

The score function U is the partial derivative of the log-likelihood function
l of Y with respect to θ, and is denoted by U(θ) = (∂/∂θ) l. As a function of
Y , it has mean 0 since

EY

(
∂

∂θ
l

)
=
∫
fY

∂

∂θ
log fY dy

=
∫
fY

1
fY

∂fY

∂θ
dy

=
∫
∂fY

∂θ
dy

=
∂

∂θ

∫
fY dy =

∂

∂θ
1 = 0. (7.5)

Using expression (7.4) one may write

EY

(
∂

∂θ
l

)
= EY

(
A

φ
[Y − γ′(θ)]

)
,

which together with (7.5) implies that for distributions in an exponential
family we have E(Y ) = µ = γ ′(θ).
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Moreover,

EY

[
∂2

∂θ2
l +
(
∂

∂θ
l

)2
]

=
∫
fY

[
∂

∂θ

(
1
fY

∂fY

∂θ

)
+
(

1
fY

∂fY

∂θ

)2
]
dy

=
∫
fY

1
f2

Y

[
−
(
∂fY

∂θ

)2

+
∂2fY

∂θ2
fY +

(
∂fY

∂θ

)2
]
dy

=
∫
∂2fY

∂θ2
dy

=
∂2

∂θ2

∫
fY dy =

∂2

∂θ2
1 = 0.

The Fisher information I(θ) in Y for θ is defined by I(θ) = E( ∂
∂θ l)

2, and
therefore by the above we have two different expressions for this information
given by

I(θ) = E

(
∂

∂θ
l

)2

= −E
(
∂2

∂θ2
l

)
.

Furthermore, it also follows that

E

(
∂2

∂θ2
l

)
= − γ ′′(θ)

φ/A
and E

(
∂

∂θ
l

)2

= E

(
Y − γ ′(θ)
φ/A

)2

=
V ar(Y )
(φ/A)2

and consequently,

V ar (Y ) =
φ

A
γ ′′(θ) ≡ φ

A
V (µ).

We use V (µ) = γ ′′(θ) to denote the variance function associated with the
family. Note that when φ/A = 1, the function γ(θ) has the property that
E(Y ) = γ′(θ) and V ar(Y ) = γ ′′(θ) = V (µ). Consequently, γ(θ) is sometimes
referred to as the cumulant function of Y .

We will now describe briefly four frequently used exponential families and
their parameters.

Example 7.2 Normal family
If Y ∼ N(µ, σ2), then it has density function

fY (y) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
for all real y.

By completing the square in the exponent, the log-likelihood function l may
be represented in the form

l(µ, σ2 : y) =
yµ− µ2/2

σ2
− 1

2

(
y2

σ2
+ log 2πσ2

)
.
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Using the notation

θ = µ, φ = σ2, γ(θ) = θ2/2, A = 1 and τ(y, φ) = −1
2

(
y2

φ
+ log 2πφ

)
,

we see that Y belongs to an exponential family. Moreover,

E(Y ) = γ′(θ) = θ and Var(Y ) = φγ′′(θ) = σ2 · 1 = σ2 V (θ).

In particular, the natural parameter for the normal distribution N(µ, σ2) is
µ, and the scale or dispersion parameter is σ2.

Example 7.3 Poisson family
Let Y have Poisson distribution with parameter µ, that is,

fY (y) = µy e
−µ

y!
= exp (y logµ− µ− log y!)

for y = 0, 1, . . . , . Using

θ = logµ, A = φ = 1, γ(θ) = eθ and τ(y, φ) = − log y !,

it follows that the Poisson family of distributions is an exponential family with
natural parameter θ = logµ and dispersion parameter φ = 1. The suggestion
is that log µ is the natural parameter for the Poisson distribution, and not µ
itself! In the Poisson GLM model, it is usually logµ which is linked to linear
combinations of explanatory random variables rather than µ. Note that

E(Y ) = γ′(θ) = eθ = µ and Var(Y ) = φγ′′(θ) = 1 eθ = µ = V (µ).

In particular, the variance of a Poisson random variable is its mean and the
dispersion parameter φ = 1. This is in sharp contrast to the normal distri-
bution, where the variance σ2 is not in any way related to the mean µ. The
normal distribution has dispersion parameter φ = σ2 and V (µ) = 1.

Example 7.4 Binomial family
Let S ∼ B(n, p) be the number of successes in n Bernoulli trials. We know
that the observed proportion of successes Y = S/n is an unbiased estimator
of the probability of success p = µ = E(Y ). The probability function for Y
may be expressed as

fY (y) = P [Y = y] = P [S = ny] = fS(ny)

=
(
n

ny

)
pny(1− p)n−ny

= exp
{
n y log

p

1− p
+ n log(1− p) + log

(
n

ny

)}
= exp

{
n [y log(p/(1− p)) + log(1− p)] + log

(
n

ny

)}
.
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Therefore using the notation

θ = logit p, γ(θ) = log(1 + eθ), φ = 1, A = n, and τ(y, φ/n) = log
(
n

ny

)
,

it follows that the random variable Y (representing the proportion of successes
in n Bernoulli trials with success probability p = µ) belongs to an exponential
family. The natural parameter for the binomial distribution is therefore θ =
logit p = log(p/1− p), and not p. Note here that

E(Y ) = γ′(θ) =
eθ

1 + eθ
= µ = p

and

Var(Y) =
φ

n
γ ′′(θ) =

1
n

eθ

(1 + eθ)2
=

1
n
µ(1− µ) =

1
n
p(1− p) =

V (p)
n

.

Example 7.5 Gamma family
The random variable Y has the gamma distribution (Y ∼ Γ(α, λ)) with pa-
rameters α and λ if it has density function given by

fY (y) =
λα yα−1 e−λy

Γ(α)
for y > 0.

In this case, the mean of Y is given by E(Y ) = µ = α/λ, while the variance
is V ar(Y ) = α/λ2. There are other equivalent ways of reparameterizing the
gamma distribution, and we have already seen that using the parameters α
and µ = α/λ instead of α and λ can be beneficial in maximum likelihood
estimation from the gamma family. Using these parameters α and µ, we may
re-express the density of Y as

fY (y) =
(α

µ )α yα−1e−
α
µ y

Γ(α)

= exp
{
−α
µ
y + α logα− α logµ+ (α− 1) log y − log Γ(α)

}
= exp

{
y(−1/µ)− logµ

1/α
+ α logα+ (α− 1) log y − log Γ(α)

}
.

Therefore using θ = −1/µ, γ(θ) = log(−1/θ) = − log(−θ), φ = 1/α, A = 1
and τ(y, φ) = α logα + (α − 1) log y − log Γ(α), it follows that the gamma
family is an exponential family. We may write

E(Y ) = γ′(θ) = −1/θ = µ
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and

V ar(Y ) = φγ′′(θ) =
1
α

1
θ2

=
µ2

α
=

V (µ)
α

,

where V (µ) = µ2 is the variance function (recall that V ar(Y ) = (φ/A)V (µ)).
In the special case when α = 1, one obtains the exponential distribution where
V ar(Y ) = V (µ). Note that the scale parameter φ = 1/α for the Gamma
family is actually the square of the coefficient of variation (standard deviation
divided by the mean) of Y .

In practice, in the use of GLM, we will usually assume that our data is a
sample from an exponential family. We will then use the method of maximum
likelihood to make inferences about relevant parameters. For n observations
y = (y1, . . . , yn) from an exponential family, the log-likelihood would have the
form

l(θ, φ;y) =
n∑

i=1

[Ai [yiθi − γ(θi)]/φ + τ(yi, φ/Ai) ], (7.6)

where we assume that

E(Yi) ≡ µi = γ ′(θi) and V ar(Yi) = (φ/Ai)γ ′′(θi) = (φ/Ai)V (µi).

For example, if we have a sample of n binomial observations where yi =
si/ni is the proportion of successes in ni trials (with probability of success
pi), then the log-likelihood takes the form

l(θ, φ;y) =
n∑

i=1

ni[yiθi − log(1 + eθi)] + log
(
ni

niyi

)

=
n∑

i=1

ni[yilogit(pi) + log(1− pi)] + log
(
ni

niyi

)
, where

E(Yi) = eθi/(1 + eθi) = pi and
V ar(Yi) = (1/ni) eθi/(1 + eθi)2 = pi(1− pi)/ni.

The reader is advised to carefully note the distinction in this case between n
(the number of binomial samples) and ni (the number of Bernoulli trials in
the ith sample).

7.3.2 Link functions and linear predictors

In GLM, we define a relationship between the mean response E(Y ) = µ and
a linear combination of selected explanatory variables xT through a function
g whereby

g(E(Y )) = xTβββ = η.

Such a function g is called a link function, and although there are often several
possibilities to use as a link in any given situation, for any given exponential
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family there is a canonical link function. In the expression (7.3) for the
density (or probability) function of a random variable Y which belongs to
a one-parameter exponential family, we referred to the parameter θ as the
natural or canonical parameter. This parameter θ will be related to the mean
µ of Y through some function gN whereby gN (µ) = θ. If we use this function
gN as our link to the linear predictor in the model, then our link is called the
canonical or natural link.

Table 7.2 gives the canonical link and variance functions, as well as the scale
parameters for the standard exponential families we have already considered.

TABLE 7.2

Canonical link and variance functions.
Family Canonical link Name Variance V(µ) Scale φ

Normal µ identity 1 σ2

Poisson logµ log µ 1
Binomial log[µ/(1− µ)] logit µ(1− µ) 1
Gamma −1/µ inverse µ2 1/α

It is not obligatory to use the above canonical link functions when using a
particular exponential family. It produces sensible results most of the time;
however, each case should be judged on its own merits. For the binomial
family the probit function (g(µ) = Φ−1(µ)) or the complementary log log
function (g(µ) = log{− log(1 − µ)}) are often used. For the Poisson family,
instead of the (canonical) log link, one sometimes makes use of the identity
(g(µ) = µ) or square root (g(µ) =

√
µ) links. For the gamma family, it

is common to use the link 1/µ instead of −1/µ (although, of course, they
both represent the same model), and on some occasions one uses the identity
link or the log link. In general, one requires that the link function g be a
one-to-one function which is differentiable. This is a technical requirement
which is necessary to ensure that the numerical procedure used to calculate
the maximum likelihood estimates works properly.

Having decided on a distribution for the data and a link function g, one
decides which of the available explanatory variables (factors and covariates)
have a significant effect on the response and hence should be included in a good
model (this is often done by comparing many possible models). Interactions,
either between factors or covariates, or between a factor and a covariate may
also appear in the predictor. The linear predictor is η = xTβββ, where the
parameters βββ need to be estimated (for the GLM, this is done via maximum
likelihood). Then, for any given set of explanatory variables, we can determine
the corresponding linear predictor η and predict the value of the response
variable to be g−1(η) = E(Y ). Before going any further, we define exactly
what we mean by factors, covariates and interactions.
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7.3.3 Factors and covariates

Factors are categorical variables, and the values a factor takes are called its
levels. For example, gender is a factor with two levels (male/female), smoking
status is a factor with two levels (Y/N), and education achievement is a factor
with say four levels (primary, secondary, tertiary and postgraduate). In a one-
factor model we need to estimate one parameter for each level the factor takes.
For each additional factor B (say with b levels) we add to the model, we need
to estimate an extra b−1 parameters. We collectively refer to the parameters
representing a factor, not involved in an interaction, as the main effect of the
factor. Covariates are numerical variables. For example, age, policy duration,
number of accidents in last three years, exam mark and salary are covariates.
If a linear relationship exists between the linear predictor and the covariate,
only one parameter for the variate needs to be estimated.

Example 7.6
An analyst, working in motor insurance, has developed a GLM to estimate
the pure premium she should charge to a policyholder of a given age, gender
and vehicle rating group (VRG). The company uses ten rating groups. It is
known that the total claims an individual with a fixed explanatory vector (i.e.,
fixed age, gender type and VRG) makes is well modeled by a gamma random
variable. Suppose the analyst finds no interactions between these factors and
a linear effect of age. Then the final model will have a linear predictor of the
form:

η = αi + γj + β xage,

where αi is the parameter for the ith level of gender (i = 1 for male, 2 for
female), γj is the parameter for the jth level of VRG (1 ≤ j ≤ 10) and β is
the parameter for age (xage).

Note here the model is overparameterized. We have defined 13 parameters
but actually we only need 12 to completely specify the model. We will not
worry about this here, however. In fact, for simplicity of interpretation, we
will often write our models in this form.

7.3.4 Interactions

An interaction between two factors B and C exists when the effect on the
linear predictor of changing the level of factor B varies depending on the
level of factor C. Suppose factor B has b levels, and C has c levels. Then
the model involving factors B and C but not their interaction has b + c − 1
parameters. However the model involving B and C and their interaction B.C
has bc parameters. Therefore adding an interaction term to the model results
in estimating an extra bc− (b+ c− 1) = (b− 1)(c− 1) parameters!

Continuing with our example on motor insurance premium rating, suppose
the analyst included in her previous model an interaction between gender and
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VRG. This means that the difference (in the linear predictor) between males
and females is nonconstant over VRG. The linear predictor for such a model
can be written as:

η = αi + γj + (αγ)ij + β xage,

where the parameter (αγ)ij represents the interaction effect at the ith level
of gender and the jth level of VRG. Again notice that the model is overpa-
rameterized. The way it is written above suggests we need to estimate 20
interaction parameters. In fact, only (2 − 1)(10 − 1) = 9 can be estimated
independently of the main effects.

We can also have an interaction between a covariate and a factor. In this
case the effect of the variate changes at different levels of the factor. Suppose
there is an interaction between a covariate x and a factor B (with b levels) in a
model. If x has a linear relationship with η for a given level of B, then we will
need to estimate b parameters for x (one for each level of B). For example,
extending the previous model for motor insurance premiums, suppose the
effect of age was different for each VRG. Then an interaction between age
and VRG would exist and we could write

η = αi + γj + (αγ)ij + β xage + βj xage,

where β denotes the (average) effect of age and βj is the difference between
this (average) effect and that for VRG j (1 ≤ j ≤ 10) of a one-year increase
in age on the linear predictor η . All other parameters in the model are as
before. Note once again that in writing the model in this (informative) way,
it is strictly speaking overparameterized.

For a variate such as age, polynomial coefficients can appear in the linear
predictor. The following describes a model containing the factors gender and
VRG, and where there is a quadratic relationship between the linear predictor
and age:

η = αi + γj + β1 xage + β2 x
2
age.

Another way of looking at it however is to consider x2
age as another variable,

and in this way it is clear that η is “linear in the explanatory variables” (one
of our requirements is that η is a linear combination of the parameters βββ). It
is also eligible to use a function of age as a variable. We may feel that there
is a linear relationship between η and log(age). Again assuming the factors
gender and VRG are in the model, a possible predictor would be:

η = αi + γj + β log(xage).

Table 7.3 gives some shorthand notation that is useful when fitting these
models using a computer program such as SAS.

For the normal family, the canonical link function is the identity function,
and in using this link one is modeling the mean itself as a linear combination
of predictor variables. In Example 7.1 on modeling university degree mark, we
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TABLE 7.3

Notation for linear predictors.
GLM model linear predictors

Model predictor Shorthand notation

η = αi gender
η = αi + γj gender + VRG
η = αi + γj + β xage gender + VRG + age
η = αi + γj + (αγ)ij + β xage gender + VRG+ gender.VRG + age
η = αi + γj + (αγ)ij gender + VRG+ gender.VRG

+ β xage + βj xage + age + age.VRG
η = αi + γj + (αγ)ij + βj xage gender + VRG+ gender.VRG + age.VRG
η = αi + γj + β1xage + β2x

2
age gender + VRG + age + age2

η = αi + γj + β log(age) gender + VRG+ log(age)

assumed a normal distribution for the data (degree marks), a linear predictor
of the form

η = αhome + β1 xpoints + β2 x
2
points + β3 xage,

and an identity link between the mean µ and the predictor η (that is, g(µ) =
µ = η). That is not to say that we could not have proceeded differently. For
example, we could have tried to make use of information which was available
on the year of entry (xyear) of each of the students into the program and
hence (assuming significance of this covariate) used a linear predictor of the
form

η∗ = αhome + β1 xpoints + β2 x
2
points + β3 xage + β4 xyear.

Another variation would be to use a link function different to the identity
link. We might have considered a log link where one models the log of the
mean degree mark as a linear function of the predictors (that is, log(µ) =
g(µ) = η).

In practice, once one has decided on the particular exponential family to
use as a distribution for the data, one usually makes use of the canonical link
function and then decides on which variables to include in the linear predictor.
Had our interest been, for example, on the proportion of students with given
characteristics (gender, age, entry marks, home, etc.) who obtain a First-class
honors degree (a degree mark in excess of 70%), then our approach would have
been quite different. In this case, our data would be binomial, and we would
probably make use of the either the logit (canonical) or probit link functions.

Example 7.7
A study is undertaken in order to devise a model to predict pass rates for
young adults taking a test for a driving license. The data in Table 7.4 was
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collected from a local testing center on the basis of results over a 30-day
period. Our observations for any given gender and age group are of the form
Y/n where Y is the number passing the exam and n is the number taking the
test.

TABLE 7.4

Driver testing results for males and females
aged [18 : 30].

males females
Age number n pass number n pass
18 25 5 20 11
19 37 14 22 13
20 38 18 29 15
21 42 18 37 19
22 37 22 31 15
23 36 18 30 19
24 45 30 36 20
25 33 19 42 29
26 27 18 40 23
27 31 23 34 22
28 33 23 28 19
29 27 23 38 26
30 26 24 42 27

A graph of the pass rates by age for males and females is given in Figure
7.3. Pass rates appear to increase somewhat with age for males, and to a
lesser extent for females. The overall pass rates (over all ages) are similar
(58.35% = 255/437 for males and 60.14% = 258/429 for females), with more
variability for males. There are, of course, many factors that influence whether
or not a person will pass such a test, and here we consider both gender and
age as possible explanatory variables. In general terms, the linear predictor η
we shall use in order to “link up” with the mean µ = E(Y/n) might have the
form

η = αgender + βgender xage,

where xage is the age of individuals in the group of interest. The parameters
αgender and βgender must be estimated, and in theory may take different values
for males and females. Note, of course, that µ = E(Y/n) will necessarily be
between 0 and 1, although if αgender and βgender are allowed to vary freely,
then η can take any real value. For this binomial situation we consider the
logistic function g for linking µ and η where g(µ) = logit(µ) = η.

An interesting aspect of this data (which could be ascertained by considering
different models) is that gender on its own (or in addition to the variable age)
is not a significant predictor, but that it interacts in a significant manner with
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Driving test pass rates.
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age as a predictor. Using the method of maximum likelihood for this model,
the following estimates were obtained for the relevant parameters:

α̂F = −0.968449, α̂M = −4.584923, β̂F = 0.056405, β̂M = 0.209524.

The above estimates were obtained using the linear models function lm in
the package R with the data from Table 7.4, and similar (identical) results
should be obtained from any other good statistical package. Note that es-
timates of βgender for both males and females are positive, indicating that
expected pass rates increase with age for both genders. We can summarize
the above results by giving the linear predictors for females and males which
are, respectively:

η̂F = −0.968449 + (0.056405) xage and
η̂M = −4.584923 + (0.209524) xage.

For example, the linear predictor for a 22-year-old female would be −0.968449
+ (0.056405) 22 = 0.272461. However, we would normally be more interested
in the model predicted pass rate for a 22-year-old female, and this is where
the link function comes in. In our model, logit E(Y/n) = logit µ = η, or
µ = eη/(1 + eη). That is to say the inverse of the link function

g(µ) = logit µ = log
[

µ

1− µ

]
= η

is g−1(η) = eη/(1+eη). Hence the model predicted pass rate for a 22-year-old
female would be

µ̂ =
e0.272461

1 + e0.272461
= 0.567697,

that is, about 56.8%. Plots of the model predicted pass rates for males and
females are plotted in Figure 7.3. Use of the logit function allows one to make
quick comparisons for the odds of passing. For example, using this model, the
predicted odds of passing for a male would be

µ̂

1− µ̂
= eηM = e−4.584923+(0.209524) xage .

In particular, for each additional year of age for a male, the odds of passing
increase by a factor of e(0.209524) = 1.233091 (approximately 1.23).

In the model used to predict driver pass rates, there is an interaction be-
tween the covariate age and the factor gender. In other words, the effect of
age is different for the two genders, and this is illustrated effectively in Figure
7.3. A simpler model, but which in this case would not be appropriate, would
be one where the linear predictor were of the form

η = αgender + β xage.
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That is, the effect of age is the same for both females and males, and plots of
the linear predictors against age for females and males would give two parallel
lines. (Note, however, that the corresponding predicted value curves for pass
rates would not necessarily be parallel!)

When a variable (covariate or factor) is included in a model, it is called a
main effect. When one includes an interaction term between two variables,
one says there is an interaction effect and usually includes both of the corre-
sponding main effects in the model. Clearly, it is possible to have interactions
between two factors, two covariates, or a factor and a covariate in a model.
Such interactions are order 2 interactions, and in models with many possi-
ble explanatory variables one may find significant interactions of order 3 or
higher. Higher order interactions can often be challenging to interpret.

7.3.5 Minimally sufficient statistics

If we have a sample of n independent observations (y1, . . . , yn) where each yi

has distribution from a given exponential family with parameters (θi, φ), then
the log-likelihood for the sample is

l(θ,y) =
n∑
1

Ai

[
yiθi − γ(θi)

φ

]
+ τ(yi, φ/Ai).

If g is a function such that g(µi) = θi =
∑p

1 xijβj , then the log-likelihood for
the parameters (β1, . . . , βp) takes the form

l(βββ,y) =

 p∑
j=1

βj

n∑
i=1

Ai
yixij

φ
−

n∑
i=1

[
Ai
γ(θi)
φ

− τ(yi, φ/Ai)
] .

It then follows (assuming φ1, . . . , φp are known) from the factorization theo-
rem for sufficient statistics that{

n∑
i=1

Ai
yixij

φ
: j = 1, . . . , p

}

is a set of minimally sufficient statistics for the parameters (β1, . . . , βp). Ba-
sically, this says that these statistics contain all of the information necessary
to estimate βββ, and knowing the individual values of the yi gives us no more
additional information in this regard. This is another reason that the function
g with the property that g(µ) = θ = η for an exponential family is called the
canonical link for that family. As we have already seen, E(Y ) = µ = γ′(θ),
from which it follows that the canonical link function g for a family satisfies
g = (γ′)−1. The canonical link function and the variance function are related
by V (µ) = (g−1)′(µ) where ′ denotes differentiation with respect to θ.



MODEL SELECTION AND DEVIANCE 245

7.4 Model selection and deviance

Usually before a final model is selected, one has a number of candidate vari-
ables which may influence the response. In the final model a subset of these
is selected which hopefully gives one the best possible (or at least a good)
description of the underlying process. Two criteria that are used to make
the choice are goodness-of-fit and parsimony (the quality of having few pa-
rameters yet fitting the data well). We would like the model to provide a
good description of the data which was used to fit the model. Goodness-of-fit
(or perhaps more accurately lack-of-fit) is often measured by deviance. One
would also like the final model to be as simple as possible. Models with fewer
parameters are easier to use. In addition, estimating parameters for variables
or for factors that actually have no effect on the response is damaging to the
model since it increases the variance of the parameter estimates, and hence
decreases the accuracy of resulting inferences. Unfortunately, herein lies a
conflict of interest! The more parameters one adds to the model, the better
it will fit the data but the less parsimonious the resulting model will be. We
need a way to resolve these two conflicting aims.

Although deviance may be used to give a measure of fit for a model, its
main use is to compare possible models which are nested (that is, where the
set of explanatory variables of one model is a subset of those of another).
One may view the analysis of deviance as essentially a generalization of the
classical method of analysis of variance.

7.4.1 Deviance and the saturated model

The saturated model provides a perfect fit for the given data. Such a model is
also often referred to as a maximal or full model. The number of parameters
(denoted by nS) for the saturated model is in many cases the same as the
maximum number of covariate classes when the data is categorical, or the
number of means when the data is continuous. In some cases, it might actually
be the number of observed data points n. In terms of goodness-of-fit, one
cannot do any better than the saturated model, but in terms of parsimony it
is essentially useless.

In order to compare the appropriateness of a model M with p < nS regres-
sion parameters for a set of data y, we compare the maximum value of its
likelihood function with that of the saturated model. The log-likelihood func-
tion l(θ;y) in a generalized linear model depends on the linear coefficients in
the predictor η = β1x1 + · · ·+βpxp by way of the link function g(µ) = η. One
finds maximum likelihood estimates of the coefficients in the linear predictor,
which by the invariance property of the method of maximum likelihood yield
ML estimates of the µi.

Let LS and LM be, respectively, the maximum values of the likelihood
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functions for the data in hand for the saturated model S and the model
under consideration M . Using lS = logLS and lM = logLM , we consider the
statistic (known as the log of the likelihood ratio statistic) given by log λS,M =
log(LS/LM ) = lS−lM . Now LS ≥ LM , and hence lS−lM ≥ 0 since (assuming
that the same exponential family distribution and link function is used for
both models) the saturated model provides a complete description of the data.
If the model M fits the data reasonably well, then LS

.= LM and log λS,M

should be reasonably small. Large values of log λS,M suggest a poor fit.
Let us assume for the moment that we are working with a model where

the dispersion parameter φ = 1 (for example, when the response is Poisson
or binomial). The maximum likelihood estimate for E(Yi) = µi = γ′(θi) in
the saturated model is clearly yi itself, or, equivalently, the estimate for θi in
the saturated model is θ(yi) ≡ (γ′)−1(yi). Let θ̂i be the maximum likelihood
estimate of θi under the model M . Then the deviance of the model M based
on the data y (or twice the log-likelihood ratio statistic for testing the model
M relative to the saturated model S) takes the form (see Venables and Ripley
[57])

DM = 2 (lS − lM )

= 2
nS∑
i=1

Ai

[
{yiθ(yi)− γ(θ(yi))} −

{
yiθ̂i − γ(θ̂i)

}]
, (7.7)

where
DM (yi) = 2Ai [(yiθ(yi)− γ(θ(yi))− {yiθ̂i − γ(θ̂i)}]

is the individual contribution of the observation yi to the overall deviance
DM . As we shall see later, di is sometimes used for DM (yi).

Example 7.8 Deviance for the Poisson GLM
In the Poisson GLM with n independent Poisson observations,

E(Yi) = µi = γ′(θi) = eθi for i = 1, . . . , n.

Using the natural parameter θ = log(µ), the log-likelihood function is

l(θ,y) =
n∑
1

[yiθi − eθi − log yi!] =
n∑
1

[yi logµi − µi − log yi!]. (7.8)

In the saturated model, the maximum likelihood estimate for θi is

θ(yi) = (γ′)−1(yi) = (exp ′)−1(yi) = log(yi).

Therefore the maximum value of the log-likelihood function for the saturated
model is

lS =
n∑
1

[yi log yi − yi − log yi!].
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Letting µ̂i = eθ̂i (equivalently, log(µ̂i) = θ̂i) be the maximum likelihood
estimates for µi for the model of interest M , then

lM =
n∑
1

[yi log µ̂i − µ̂i − log yi!].

The deviance for model M takes the form (we assume the scale parameter
φ = 1)

DM = 2 (lS − lM )

= 2
n∑

i=1

[
{yiθ(yi)− γ(θ(yi))} −

{
yiθ̂i − γ(θ̂i)

}]
= 2

n∑
i=1

[{yi log yi − yi} − {yi log µ̂i − µ̂i}]

= 2
n∑

i=1

[yi (log yi − log µ̂i)− (yi − µ̂i) ]. (7.9)

Assume the model M has a constant term ( log(µi) = β1 +
∑p

j=2 βj xij). The
score statistic U1 for β1 is the partial derivative of l with respect to β1, and
hence using (7.8), U1 = (∂/∂β1) l =

∑n
1 (yi − µi). For maximum likelihood

estimates, the score statistics (partials of the log-likelihood function l with
respect to the parameters βi) must be zero. In particular, U1 = 0, and hence∑n

1 yi =
∑n

1 µ̂i. The deviance DM therefore reduces to

DM = 2
n∑

i=1

yi(log yi − log µ̂i) (since
n∑

i=1

(yi − µ̂i) = 0)

= 2
n∑

i=1

yi log (yi/µ̂i) = 2
n∑

i=1

oi log(oi/ei),

where oi = yi and ei = µ̂i = exp(β̂1 +
∑p

j=2 β̂jxij) are, respectively, the
observed and estimated (predicted or expected) values.

The deviance DM may be thought of as a measure of distance between the
saturated model (basically, the data in hand) and a proposed model M . The
simplest possible model is the so-called constant model where E(Yi) = µ is
constant for all i, and is sometimes referred to as the null model M0 (with one
parameter – the unknown mean). The deviance of the null model is usually
called the null deviance.

When the scale parameter φ differs from one, the quantity DM (where the
ML parameter estimates take account of φ) is still usually referred to as the
deviance, even though it no longer is twice the likelihood ratio statistic (see
Venables and Ripley [57], or McCullagh and Nelder [41] for further details).
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When φ 6= 1, one often considers the scaled deviance given by DM/φ. For
the normal model M where Yi ∼ N(µ, σ2) and

E(Yi) = µi = xT
i βββ = β1xi1 + · · ·+ βpxip,

the deviance takes the form DM =
∑n

1 (yi − µ̂i)2 (see Problem 2) and more-
over,

DM

σ2
=
∑n

1 (yi − µ̂i)2

σ2
∼ χ2

n−p.

Hence in the normal case where the variance is externally known, the (scaled)
deviance can be used to test if the model M is acceptable. When the scale
parameter φ is unknown, it is common practice to use an estimate.

The scale parameter (or scale factor) may be used to model overdispersion
in the model. Overdispersion is a relatively common phenomena resulting
from observing more variation in one’s data than might be expected under a
given model. In particular, it is often observed when dealing with count data
(and using the binomial or Poisson exponential families where, in theory, the
scale parameter is one, but variation in the data suggests higher variation than
expected). Possible causes for overdispersion include the presence of outliers
and a lack of explanatory variables in the model.

If the data is not normal and φ is known, then DM/φ may be approximately
χ2

n−p when M is a p parameter model (see Firth [26] for a discussion on the
binomial model). Note that the (scaled) null deviance is approximately χ2

distributed with nS − 1 degrees of freedom when the null model is valid! If
the distribution is normal, then DM0/σ

2 has the (exact) χ2
n−1 distribution.

7.4.2 Comparing models with deviance

Suppose we know that the correct model for our data should definitely contain
the p variables: x1, x2, . . . , xp, but that we would like to know whether (some
of) the q variables xp+1, . . . , xp+q should also appear in the correct model.
Let βi be the parameter corresponding to the variable xi in the model. We
let M1 denote the model where βi = 0 for i > p, and M2 the (larger) model
where βi 6= 0 for at least one i > p. The likelihood ratio test of H0 : M1

versus HA : M2 is based on the test statistic

2 log
LM2

LM1

= 2(lM2 − lM1) ∼̇ χ2
q , (7.10)

where LM2 is the maximum value of the likelihood under the model with p+q
parameters with corresponding log-likelihood lM2 (similarly for LM1 and lM1).
Essentially, if the extra variables in the larger model truly have no effect, then
twice the difference between the (maximized) log-likelihoods of the two models
will have, approximately, a χ2 distribution with q degrees of freedom!

As previously mentioned, the deviance is a measure of goodness-of-fit of
the model. Intuitively speaking, this makes sense, for if the model of interest
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(with only p variables) does not fit the data well, the model will most likely
predict fitted values quite different from the observed values. In other words,
the data will not be consistent with the model and hence the likelihood (or
probability) of the observed data (and also the log-likelihood lM1 ) will be low
under the model being considered. The saturated log-likelihood lS will then
be substantially larger than lM1 , and the deviance will be large. Using similar
reasoning, it is sensible that the deviance should be small when the model fits
the data well. Therefore in testing the model M1 versus M2, we have from
Equation (7.10) that when M1 is valid

2 (lM2−lM1) = 2 (lS−lM1)−2 (lS−lM2) = DM1−DM2 ≡ ∆D ∼̇ χ2
q. (7.11)

Hence under the null hypothesis that βi = 0 for i ≥ p+1, we have that the
difference in deviance ∆D between the smaller and larger model is (approxi-
mately) a χ2 random variable with q degrees of freedom. If the null hypothesis
is false (with M2 being the correct model), we might expect the difference in
deviance to be larger than that under the null hypothesis. At the α percent
significance level, it makes sense then to conclude that some of the extra vari-
ables should be in the correct model if ∆D = DM1 −DM2 > χ2

1−α,q . (i.e., for
a 5% test we would include the extra terms in our model if the difference in
deviance ∆D exceeds the 95% quantile of the χ2 distribution with q degrees
of freedom). It should be noted that models are usually compared by testing
one extra term at a time!

Example 7.9 Poisson regression model for absenteeism
A study is to be made on absenteeism by employees in a factory, and in
particular to investigate if the rate of absenteeism differs by gender. Samples
of m male and n − m female employees are to be selected, and then their
records will be used to find how many days the respective individuals were
absent for work during the past year. We shall assume that the observations
Y1, . . . , Ym, . . . , Yn can be viewed as independent Poisson random variables
with E(Yi) = µi where

logµi =
{
β0 i = 1, . . . ,m
β0 + β1 i = m+ 1, . . . , n. (7.12)

We will use M1 to denote the Poisson GLM model given by (7.12), and M0 to
denote the null model (where logµi = β0 for all i = 1, . . . , n). From Equation
(7.8), it follows that the log-likelihood function is of the form

l(β;y) = −meβ0 − (n−m)eβ0+β1 + β0

n∑
i=1

yi + β1

n∑
i=m+1

yi − log(
n∏

i=1

yi!).

Solving the (score) equations

∂l

∂β0
= 0 = −meβ0 − (n−m) eβ0+β1 +

n∑
1

yi
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∂l

∂β1
= 0 = −(n−m) eβ0+β1 +

n∑
m+1

yi,

one obtains the maximum likelihood estimators β̂0 = log(ȳM ) and β̂1 =
log(ȳF /ȳM ), where ȳM =

∑m
1 yi/m and ȳF =

∑n
m+1 yi/(n − m) are, re-

spectively, the mean number of absences for males and females.
For model M1, the fitted values are therefore µ̂i = ȳM for i = 1, . . . ,m, and

µ̂i = ȳF for i = m+ 1, . . . , n. Hence using (7.9), the deviance DM1 is

2

(
m∑
1

yi(log yi − log ȳM )− (yi − ȳM ) +
n∑

m+1

yi(log yi − log ȳF )− (yi − ȳF )

)

= 2

(
m∑
1

yi log (yi/ȳM ) +
n∑

m+1

yi log (yi/ȳF )

)
.

For the null model M0, the maximum likelihood estimate of β0 is log(ȳ) =
log(

∑n
1 yi/n), and hence the deviance is

DM0 = 2

(
n∑
1

yi log yi −
n∑
1

yi log ȳ

)
= 2

(
n∑
1

yi log(yi/ȳ)

)
.

Suppose the following data is collected on the number of days absent from
work during the past year from a sample of 24 employees:

y = (12, 9, 7, 5, 7, 4, 6, 9, 3, 9, 4, 10, 13, 11, 8, 7, 4, 5, 6, 8, 11, 7, 9, 6).

The first 12 components in y represent male employees and the remainder are
for females. Is gender a significant factor in modeling days absent for workers
in this company, on the basis of this data? In other words, is M1 a reasonable
model here?

Table 7.5 gives the individual contributions

di = 2 [yi (log yi − log µ̂i)− (yi − µ̂i)]

to the deviance for the models M0 and M1 using the expression (7.9) for a
Poisson GLM. For this data, ȳM = 7.08, ȳF = 7.92 and ȳ = 7.5.

Table 7.6 gives the deviances for the null model M0 and the model M1

including gender as a factor. One sees that both of the models fit reasonably
well (remember that the mean of a χ2 distribution is its degrees of freedom).
The drop in deviance ∆D from the null model M0 to M1 is only 0.556, which
is not significant relative to a χ2 distribution with 1 degree of freedom. This
suggests that there is no need to include β1 in the model for work absence, or
in other words, that gender is not a significant factor.

The following is summary output from R for this Poisson GLM model la-
beled M1 with data WorkAbsence. “glm” is the procedure in R used to fit
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TABLE 7.5

Deviance contributions in models M0 and M1 for work absence.
Deviance contribution Deviance contribution

i A G M0 M1 i A G M0 M1

1 12 M 2.28009 2.81856 13 13 F 3.30120 2.72879
2 9 M 0.28179 0.47731 14 11 F 1.42583 1.06968
3 7 M 0.03410 0.00098 15 8 F 0.03262 0.00087
4 5 M 0.94535 0.68360 16 7 F 0.03410 0.11049
5 7 M 0.03410 0.00098 17 4 F 1.97113 2.37193
6 4 M 1.97113 1.59506 18 5 F 0.94535 1.23801
7 6 M 0.32228 0.17484 19 6 F 0.32228 0.50680
8 9 M 0.28179 0.47731 20 8 F 0.03262 0.00087
9 3 M 3.50226 3.01187 21 11 F 1.42583 1.06968
10 9 M 0.28179 0.47731 22 7 F 0.03410 0.11049
11 4 M 1.97113 1.59506 23 9 F 0.28179 0.14191
12 10 M 0.75364 1.06348 24 6 F 0.32228 0.50680

TABLE 7.6

Models for work absence with and without gender.
Model Deviance df ∆D ∆df χ2

∆df,0.95

M0 22.789 23
M1 22.233 22 0.556 1 3.84

generalized linear models, specified by giving a symbolic description of the lin-
ear predictor and a description of the error distribution. Initially, summary
statistics for the deviance residuals are given. The estimate for the gender
coefficient β1 is 0.1112, which is not significant. The residual deviance is what
we have labeled DM1 . The AIC (which may be useful in comparing models
that are not hierarchical) is 117.69, and the number of scoring iterations used
for convergence for the parameter estimates is 3.

The AIC is what is known as Akaike’s information criterion, and is some-
times used to compare models (particularly, competing nonnested models).
For a model M it is defined to be −2 lM + 2 p, where lM is the maximized
log-likelihood and p is the number of parameters in the model M . It takes
account of both fit (through lM ) and parsimony (through p), and hence low
values of the AIC are to be preferred.

> summary(M1)
Call: glm(formula = absence ~ gender, family = poisson,
data=WorkAbsence) Deviance Residuals:

Min 1Q Median 3Q Max
-1.73548 -0.74063 -0.03138 0.69087 1.67885
Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.9577 0.1083 18.072 <2e-16 ***
gender1 0.1112 0.1492 0.746 0.456
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 22.789 on 23 degrees of freedom
Residual deviance: 22.233 on 22 degrees of freedom AIC: 117.69
Number of Fisher Scoring iterations: 3

7.4.3 Residual analysis for generalized linear models

Having selected a model, perhaps using an analysis of deviance as outlined in
the last section, we need to check if the model assumptions are justified and
if the model provides a good fit to the data.

A basic assumption for a GLM is that the data points y1, y2, . . . , yn are in-
dependent random observations from the same exponential family. We should
also check to see that the particular GLM we have proposed is an appropri-
ate one, that we have used a reasonable (natural?) link function, and that
we have included in the model all the available significant factors/variables,
keeping in mind the parsimony principle. Often we can detect some flaws in
a model by the use of residual plots.

Residuals are based upon differences between observed data points and
fitted values predicted by the model. The ith Pearson residual for a given
model is given by

rPi = (yi − µ̂i)/
√
V ar(µ̂i),

where µ̂i = g−1(η̂i) and V ar(µ̂i) = (φ/Ai)V (µ̂i) (here V ar(µ̂i) is the esti-
mated variance of Y given mean µ̂i). The ith deviance residual on the other
hand is given by

rdi = sgn (yi − µ̂i)
√
di,

where di is the contribution of the ith data point to the (scaled) deviance for
the model, and sgn(yi − µ̂i) = 1 if yi − µ̂i > 0 and −1 otherwise.

The Pearson residuals are often skewed for non-normal data, and this makes
the interpretation of such residual plots more difficult. The deviance residuals
are more likely to be approximately normally distributed, and hence they are
often preferred (for insurance and actuarial applications). One can show that
for normally distributed data, the Pearson and deviance residuals are the
same.

Under the assumptions for a GLM, we expect the residual plots with a
good model to show no pattern. After model selection, one should plot the
residuals against both factors and variates in the model. Any trend picked up
may indicate that an effect that should have been included in the model has
been missed. Data points with exceptionally large residuals may be outliers. A
histogram of the residuals can be used to test the distributional form assumed
in the GLM.
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Example 7.10
The data in Table 7.7 (from Pawitan [49]) gives the number of traffic accidents
at eight different locations in a city, both before and after modifications were
made in traffic controls. Note that before the changes in traffic controls were
made, the total number of accidents was recorded either over eight or nine
years depending on location, but after changes it was over only two or three
years. For this type of data, it is natural to consider a Poisson response model,
but we should take account of the fact that the observations were made over
different lengths of time (years).

One question of interest is surely whether or not the traffic control measures
have improved things in terms of reducing the rate of accidents? Here years
is an exposure variable. Before the changes, accidents were occurring in the
various locations at a rate of 124/68 = 1.824 per year, while after the changes
the rate was reduced to 15/18 = 0.833 per year. Is this observed reduction in
rate of accidents (0.833/1.824 = 0.457) actually significant?

TABLE 7.7

Traffic accidents in eight city locations before and after traffic control
improvements.

Before changes (j = 0) After changes (j = 1)
Location Years Accidents Years Accidents

1 9 13 2 0
2 9 6 2 2
3 8 30 3 4
4 8 30 2 0
5 9 10 2 0
6 8 15 2 6
7 9 7 2 1
8 8 13 3 2

We consider Poisson GLM models where the number of accidents in loca-
tion i at time j (where j = 0 and j = 1 indicate before and after changes,
respectively) is Poisson with parameter λij = nij µij . Here nij is the known
exposure (in years) associated with a given location i and time j.

Let M1 represent the model where time (before and after) is a factor rep-
resented by

log λij = log nij + logµij = log nij + β0 + β1j.

log nij is an example of what is called an offset parameter, since it should
probably be included in the model but does not need to be estimated!

The output from a GLM procedure in R for M1 (where log nij is an offset
parameter) is given below, and indicates that time is significant. Note that
the estimate of the time parameter β1 (labeled After) is β̂1 = −0.7831, indi-
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cating that the accident rate after relative to before is reduced by a factor of
exp(−0.7831) = 0.457, which is the same as that observed directly from the
data! A residual analysis would show that there are some unusual observa-
tions – in particular, those in locations 2, 3, 4 before the changes. The residual
deviance is 62.331 on 14 degrees of freedom, which is rather large.

Deviance Residuals:
Min 1Q Median 3Q Max

-2.9578 -1.8258 -0.4910 0.4056 3.5264
Coefficients:Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.6008 0.0898 6.690 2.23e-11 ***
After -0.78310.2727 -2.872 0.00408 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 72.378 on 15 degrees of freedom
Residual deviance: 62.331 on 14 degrees of freedom
AIC: 115.98

There are many possible explanations for this rather poor fit. One is that
there is too much variation here with respect to a Poisson distribution (overdis-
persion), and another is that there are not enough variables in the model to
explain the variation. With the information available here, one could also
consider a model M2 incorporating the factor location, where

log (µij) = β0 + β1j + τi,

and τi is a location parameter. A table of deviances for these candidate models
(including the null model M0 where log (µij) = β0) is given in Table 7.8. This
suggests that location should be added as a factor to the model, but also that
even for M2 there is some evidence of overdispersion (as the deviance DM2 is
still larger than χ2

7,0.95).

TABLE 7.8

Models for traffic accidents before and after changes.
Model Deviance df ∆D ∆df χ2

∆df,0.95

M0 72.378 15
M1 62.331 14 10.047 1 3.84
M2 18.368 7 43.963 7 14.07

A residual plot of the deviance residuals for model M2 is given in Figure 7.4,
and this indicates in particular two outliers. A deviance residual of −2.401
occurs in location 4 after the changes (where the yearly rate of accidents fell
from 3.75 to 0). The other outlier occurs in location 6 after the changes (with
a deviance residual of 2.262), where an increase in the yearly rate of accidents
from 1.88 to 3 occurred.
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FIGURE 7.4
Deviance residuals and fitted values for accidents in model M2.

Example 7.11

Table 7.9 gives data on automobile accidents from the the state of Florida in
1988 (see p. 201 in [1]). Subjects involved in accidents were classified according
to whether or not they were wearing a seat belt, whether or not they were
ejected from the vehicle, and whether or not they suffered a fatal injury. For
example, of the 411,594 individuals involved in an accident who were wearing
a seat belt, only 483 (or 0.12%) died as a result. One would be interested in
modeling how fatality in an accident is related to wearing a seat belt and/or
being ejected from the vehicle. We consider here a logistic regression model,
that is, a generalized linear model using the binomial family with the logit
link. Here θ = p is the probability of a fatality and log(p/(1− p)) = logit (p)
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is the log of the odds ratio of this probability.

TABLE 7.9

Automobile accident mortality data in Florida (1988).
Seat belt Ejected Fatal Nonfatal Total %

used injury injury

Yes Yes 14 1,105 1,119 1.25
Yes No 483 411,111 411,594 0.12
No Yes 497 4,624 5,121 9.71
No No 1,008 157,342 158,350 0.64

Below is a source file for the package R to build a GLM model (lmFL) for
the fatality rate using the factors belt and eject. Initially, the data frame
Florida is constructed. The package R accepts data for the binomial GLM
model in two forms. If the response is a vector, it is assumed to be a binary
vector of 0′s and 1′s (and, in this case, ni = 1 for all i, that is, the vector is
the result of a sequence of Bernoulli trials). The other possibility is a two-
column matrix where the first column is the number of successes and the
second holds the number of failures (that is, the data represents the numbers
of successes and failures in a set of binomial observations). Here it is clearly
easier to use the second method, and the matrix Florida$Ymat is constructed
(and added to the data frame Florida by using Florida$) by binding together
(using the function cbind) the two vectors fatalinj (numbers of fatalities) and
inj (number of nonfatal injuries).

R Source File for GLM model of Florida Automobile accidents.

Florida<-data.frame(belt<-factor(c("Y","Y","N","N")),
eject<-factor(c("Y","N","Y","N")),
fatalinj<-c(14,483,497,1008),
inj<-c(1105,411111,4624,157342))

Florida$Ymat<-cbind(Florida$fatalinj,Florida$inj)
lmFL<-glm(Florida$Ymat ~ belt+eject,

family=binomial,data=Florida)

There are other models which one should consider, and in particular one
should look at the saturated model (that is, where there is an interaction term
belt*eject). One would find that the interaction term is not significant. The
binomial GLM model Y ∼ seat + eject fits very well, as can be seen from a
summary of the model given below. This is a logistic model with two factors
and no interaction.
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Call: glm(formula = Florida$Ymat ~ belt + eject,
family =binomial, data = Florida)

Deviance Residuals: [1] -1.6132 0.3142 0.3256 -0.2165
Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.04362 0.03120 -161.65 <2e-16 ***
beltY -1.71732 0.05402 -31.79 <2e-16 ***
ejectY 2.79779 0.05526 50.63 <2e-16 ***

---
Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3567.723 on 3 degrees of freedom
Residual deviance: 2.854 on 1 degrees of freedom

AIC: 38.039
Number of Fisher Scoring iterations: 3

With no interaction term one is stating that the odds ratio relating fatality
to seat belts is the same both for individuals who are ejected and for those
who are not. Similarly, the odds ratio relating fatality and ejection from ve-
hicle is the same whether one is wearing a seat belt or not. The coefficient for
the factor belt is −1.71732, suggesting that the logit decreases by −1.71732
on wearing a seat belt, or equivalently, that the odds ratio is reduced by a
factor of e−1.71732 = 0.17955. In other words, the odds (ratio) of a fatality is
1/0.17955 = 5.56956 .= 5.57 times higher for a person not wearing a seat belt
than for one who is (no matter whether they were ejected or not). Similarly,
the logit increases by 2.79779 when one is ejected from a vehicle, or equiv-
alently that the odds of a fatality are 16.40834 .= 16.41 times higher when
ejected from the vehicle than when not.

Note that the residual deviance is 2.854 with 1 degree of freedom, and that
the deviance residuals are modest, indicative of a good fit. A further analysis
of residuals will reveal a high Cook’s distance (indicative of an influential
observation) for the situation when a seat belt is not used and one is not
ejected.

Predicted values of the probabilities of fatalities using this model are given
in Table 7.10, as well as the observed proportions. Remember that if logit (p) =
η, then p = eη/(1 + eη). Hence, for example, for a person not wearing a
seatbelt and who is not ejected, the predicted probability of a fatality is
e−5.04362/(1 + e−5.04362) = 0.00641.
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TABLE 7.10

Actual (and model predicted) percentages of
fatalities in Florida automobile accidents.

Seat belt Ejected Not ejected
Yes 1.25 (1.86) 0.12 (0.12)
No 9.71 (9.57) 0.64 (0.64)

7.5 Problems

1. Consider the model for final degree performance treated in Example 7.1.

(a) What is the predicted performance for a 19-year-old from outside
Ireland who enters university with 600 points?

(b) For what range of age would a Dublin student entering on 610
points expect to obtain a First-class degree?

(c) Given the applicable range for age [17,20] and points [505,640] for
this model, what is the maximum predicted performance? What
would the minimum predicted performance be?

2. Show that for a (normal GLM) model M where

E(Yi) = µi = xT
i β, Yi ∼ N(µi, σ

2), i = 1, . . . , n,

the deviance DM takes the form

DM =
n∑
1

(yi − µ̂i)2.

3. Show that the deviance contribution for an observation yi in a Poisson
GLM (with the canonical link) given by

DM (yi) = di = 2 [yi (log yi − log µ̂i)− (yi − µ̂i)]

is always nonnegative.

4. Let Si ∼ B(ni, pi) and Yi = Si/ni for i = 1, . . . ,m. Show that the
deviance in a binomial GLM model M with the logit link function for
the data Y = y is of the form

DM = 2
m∑

i=1

{
ni yi log

yi

µ̂i
+ ni (1− yi) log

1− yi

1− µ̂i

}
,

where µ̂i is the maximum likelihood estimate of E(Yi) = E(Si/ni) =
pi = µi.
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5. A binomial generalized linear model was used by a bank to predict the
probability of success of new personal investment packages. The model
took the form

log
(

p

1− p

)
= αi + γ x$ + βi x$

where αi and βi are the parameters representing whether the product
is principally property, equity or bond based. γ is the parameter for
the variate x$ (in $million), representing the marketing budget for the
product. Maximum likelihood estimates of these parameters are given
by

i = 1 (property) i = 2 (equity) i = 3 (bond)
α̂i −0.562 0.126 −2.243
β̂i 0.031 0.007 0.082

γ̂ = 0.003

What is the predicted probability of a new equity product with a $2
million budget being a success? At which budget level will a property
and a bond-based product have an equal probability of success? This
model is said to be overparameterized. Briefly suggest a suitable repa-
rameterization which would reduce the number of parameters required.

6. In a study undertaken to model the reliability of car engines by the
motor industry, the time to failure of these engines was modeled by the
density function

f(t) =
4
µ2

t e−2t/µ.

(a) Show that this density function is a member of the exponential
family of distributions. Determine the natural parameter and the
canonical link function, and find the variance function, V (µ).

(b) A GLM with an inverse link function was fitted with a linear pre-
dictor η = αi + β xsize, where αi is the parameter for the ith car
manufacturer and β is the parameter for the engine size, xsize. The
ML estimators of these parameters were calculated

α̂1 = −0.0712, α̂2 = −0.0565, α̂3 = −0.0678 and β̂ = −0.0207,

where there existed only three car manufacturers, i = 1, 2, 3. Using
this model, find the estimated mean survival time for a car pro-
duced by manufacturer 3 with a 2.5 liter engine? Express the ratio
of mean survival times for cars produced by manufacturers 1 and
2 as a function of the engine size, xsize.

7. In a study undertaken to model automobile accident rates for young
adults, a Poisson (regression) GLM model is fitted with linear predictor
of the form

ξ = αG + βG x,
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where αG and βG are parameters for the factor gender and the vari-
ate age x (in years). ML estimates of these parameters are given by
α̂F = −0.72, α̂M = −0.54, β̂F = −0.06, β̂M = −0.05 where F and M
represent females and males, respectively.

(a) What is the predicted automobile accident rate for a 25-year-old
male?

(b) Express the ratio of accident rates for females over males as a
function of age. What is the maximum value of this ratio in the
[20, 35] age range?

8. In a study undertaken to model the pass rates for young adults taking a
driving test, a binomial GLM with logistic link function was used with
linear predictor η = αG +βG x where αG and βG are parameters for the
factor gender and x is the variate age (in years). ML estimates of these
parameters gave α̂F = −0.968449, α̂M = −4.584923, β̂F = 0.056405
and β̂M = 0.209524, where F = female and M = male.

(a) What is the estimated pass rate for a 20-year-old female using this
model?

(b) What are the predicted odds (ratio of probability of success to
probability of failure) for a 20-year-old male?

(c) Briefly comment on the effect of age in pass rates.

9. Statistics on the number of deaths (in thousands) due to traffic acci-
dents and the corresponding number of registered automobile vehicles
(in hundred thousands) over a 24-year period are given in Table 7.11.

TABLE 7.11

National annual automobile deaths and registered vehicles.
Year Deaths (y) Vehicles (x1) Year Deaths (y) Vehicles (x1)

1 37.3 62.9 13 52.9 99.1
2 39.4 65.5 14 55.1 103.2
3 38.6 67.8 15 55.8 107.7
4 37.1 68.8 16 54.2 111.4
5 38.1 72.2 17 54.8 116.7
6 38.3 75.2 18 56.6 122.6
7 39.5 76.7 19 55.3 129.9
8 40.3 79.8 20 47.7 134.8
9 42.4 83.8 21 46.1 138.2
10 48.1 87.5 22 46.9 144.2
11 49.1 92.2 23 49.2 149.1
12 53.1 96.2 24 51.3 153.7
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In year 20, a new law was introduced limiting the speed limit for driv-
ing. It is decided to fit a normal linear model of the form E(Yi) =
β0 + β1 xi + β2 x

2
i , where Yi and xi are, respectively, the number of

deaths and registered automobiles for year i. When using such a nor-
mal linear model, we know that the maximum likelihood (and least
squares) estimators of βββT = (β̂0, β̂1, β̂2) are given by

βββ = (XT X)−1XT y

= (XT X)−1(1127.2,
24∑
1

xiyi,
24∑
1

x2
i yi).

Find the estimates βββ directly by finding (XT X)−1 and XT y. Determine
the residual sum of squares for this model, and obtain an estimate of
σ2. Make a plot of the deaths versus number of registered vehicles, and
include a plot of the predicted curve for deaths. Would this model be
useful for predicting future deaths?

10. Using the model developed for predicting pass rates for male and female
drivers in Example (7.7), what are the linear predictor and the predicted
pass rate for a 20-year-old male? At what age does the predicted pass
rate for males exceed that of females?

11. Construct a binomial GLM model for the driver testing data in Table
7.4, using a probit link function instead of the logit link function. How do
the predictors from such a model (including an age by gender interaction
term) compare with those given in Example 7.7?

12. The representation of a random variable in an exponential family given
by Equation (7.3) is not unique. Show that if the density of Y can be
represented in the form (7.3) with natural parameter θ, then it can also
be expressed in a similar way with natural parameter θ∗ = θ/2 by using
γ∗(θ∗) = γ(2 θ∗)/2 and A∗ = 2A.

13. Let Y have the negative binomial distribution with parameters k and
and p, that is, Y is the number of failures observed in order to attain
(a predetermined) k successes in a sequence of Bernoulli trials with
probability of success p. Such a distribution is often considered when
modeling count data where the variance is larger than the mean (an
overdispersed Poisson). Show that the negative binomial family is an
exponential family where the natural parameter is θ = log(1− p).

14. A new surgical technique for removal of a certain type of malignant
tumor in women was performed on 50 women, and survival beyond one
year was the variable of interest. Information was available on each of
the women with respect to age in years, smoking status and number
of children. For the ith individual, yi = 1 if the patient survived one
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year, and otherwise yi = 0. It is natural to consider modeling Yi as a
Bernoulli random variable, where the probability of success µi depends
on age, smoking status and number of children. It was decided to use a
linear predictor of the form

η = β0 + β1 xage + β2 xchildren,

where β0 takes one value (βS) for smokers and another (βNS , which is
not necessarily different) for nonsmokers. Using a binomial GLM model
with the canonical link, maximum likelihood estimates of the parameters
above were

β̂S = 0.92, β̂NS = 1.01, β̂1 = −0.005, and β̂2 = −0.107.

(a) What would you predict as the survival rate for a 45-year-old non-
smoking woman who had two children? What would the corre-
sponding probability be for a woman with the same characteristics
except that she is a smoker?

(b) The odds of surviving (to not surviving) is of the form eη. For a
woman with a given smoking status and age, by what factor does
the odds of surviving change with each additional child?

(c) According to this model, smoking decreases the odds of survival by
how much?

15. Employee accident numbers in two large manufacturing companies (A
& B) were compiled over a two-year period with the intention of com-
paring rates between the two companies and looking for trends over
time. The unit of time used was two months, with the results over two
years appearing in Table 7.12. The Poisson distribution is a natural
one to consider for counting accident data of this type. Although no
information is provided here on exposure of the companies to accidents
(such as number of employees), it would normally be of interest. For
example, if Company B had twice as many employees as Company A
(and otherwise working conditions were similar), then we might natu-
rally expect the accident rate in Company B to be approximately twice
that of Company A. Exposure information of this type can be taken into
consideration in GLM modeling through the use of offset parameters.

TABLE 7.12

Industrial accidents over time in companies A and B.
Time Period (Unit = 2 Months)

1 2 3 4 5 6 7 8 9 10 11 12
Company A 8 6 10 18 11 19 13 19 17 21 16 21
Company B 12 19 14 15 23 27 19 29 37 27 35 26



PROBLEMS 263

A plot of the data reveals a slight upward trend in accidents over time
for both companies. Consider and analyze a multiplicative model where
the accident rate is proportional to time for each company, or in other
words, that logµ = β0 + β1 log t + xC where xC is an indicator for
company.

16. Table 7.13 contains information on type of ship, year of construction,
period (of operation), service (in months) and number of damage inci-
dents (inc) caused by waves to forward section of cargo vessels. The
data for this table was provided by J. Crilley and L.N. Hemingway of
Lloyd’s Register of Shipping. This is a classic data set, which both ap-
pears as a data set in the software packages S-plus (ships) and R, and
also is analyzed by McCullagh and Nelder ([41], pp. 204− 208).

It is of interest to know how the risk of damage is related to the three
variables of type of ship, year and period. Note that although there
are 40 entries in the table, 5 of them (these are denoted with an ∗)
have no exposure time (months of service = 0) and hence cannot have
any accidents. There is also 1 entry (denoted with ∗∗) which is acci-
dently 0 due to a missing exposure time. Therefore we have in fact
34 observations on which to base a model. The response is the num-
ber of damage incidents, and hence it is natural to consider a Poisson
GLM model where the number of incidents is Poisson with parameter
λijk = nijk µijk. Here nijk is the known exposure (aggregate months of
service) associated with a given type i, year j and period k, and hence
is what is termed an offset parameter. The variables type of ship, year
and period being factors, analyze the data and in particular consider
the following model:

log E(number of incidents)ijk = log λijk

= log nijk + effect (type)
+ effect (year) + effect (period) .
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TABLE 7.13

Damage incidents to ships.
Type Year Period Service Inc Type Year Period Service Inc

A 60-64 60-74 127 0 C 70-74 60-74 783 6
A 60-64 75-79 63 0 C 70-74 75-79 1948 2
A 65-69 60-74 1095 3 C 75-79 60-74 0 ∗0
A 65-69 75-79 1095 4 C 75-79 75-79 274 1
A 70-74 60-74 1512 6 D 60-64 60-74 251 0
A 70-74 75-79 3353 18 D 60-64 75-79 105 0
A 75-79 60-74 0 ∗0 D 65-69 60-74 288 0
A 75-79 75-79 2244 11 D 65-69 75-79 192 0
B 60-64 60-74 44882 39 D 70-74 60-74 349 2
B 60-64 75-79 17176 29 D 70-74 75-79 1208 11
B 65-69 60-74 28609 58 D 75-79 60-74 0 ∗0
B 65-69 75-79 20370 53 D 75-79 75-79 2051 4
B 70-74 60-74 7064 12 E 60-64 60-74 45 0
B 70-74 75-79 13099 44 E 60-64 75-79 0 ∗∗0
B 75-79 60-74 0 ∗0 E 65-69 60-74 789 7
B 75-79 75-79 7117 18 E 65-69 75-79 437 7
C 60-64 60-74 1179 1 E 65-69 75-79 437 7
C 60-64 75-79 552 1 E 70-74 75-79 2161 12
C 65-69 60-74 781 0 E 75-79 60-74 0 ∗0
C 65-69 75-79 676 1 E 75-79 75-79 542 1
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Decision and Game Theory

8.1 Introduction

All around us, in all aspects of life, decisions continually need to be made.
The decision makers may be governments, boards of management, political
parties, concert promoters, team captains or even individuals like ourselves.
In many situations, a decision has to be made about which of the possible
actions will be taken in the face of considerable uncertainty. Some decisions
can be made quickly without much forethought and analysis. In other cases,
the consequences of the different actions taken may be quite variable, and it
may be worthwhile analyzing the various possibilities with considerable care.

Many decisions have to be made where the decision maker has only partial
control of the resulting outcome. This may be due to other players (or decision
makers) influencing the result, who have other objectives in mind and could
be considered as the competition. There are other situations, however, where
there may be no obvious competitors, but where there is uncertainty due to
an unknown force that has a significant impact on the outcome of any decision
made. We shall generally refer to this unknown force as nature. For example,
the success of a company expansion may depend on the health of the economy
in the coming year, and we may refer to the future state of the economy as
the state of nature. A decision to go ahead with an outdoor concert may
well depend on the weather forecast, and again we may refer to the upcoming
weather as the state of nature.

When the decision makers are conscious that their actions affect the choices,
consequent payoffs and possible behavior of the others, we have what we
shall call a game. A game is said to be cooperative if the players can make
binding agreements about possible actions and strategies, otherwise it is a
noncooperative game. The following are some examples of decisions being
made on a daily basis. Which of these would you consider to be games?

1. A political party is contesting a forthcoming election and must decide
on their policy regarding a sensitive constitutional issue regarding per-
manent residency and citizenship of foreign nationals.

2. A manufacturer of personal computers is invited by a university to sub-
mit computer price packages for exclusive selling rights to the student

265



266 DECISION AND GAME THEORY

body.

3. A management executive body is preparing a salary package (with share
options) for a new CEO.

4. A traveler to a rural area in Africa is advised to buy malaria tablets
for the journey. The tablets are, however, relatively expensive and have
some side effects.

5. A young couple in their twenties has just celebrated the birth of their
first child. Both parents are very healthy with good jobs. They are
considering the possibility of purchasing life cover for themselves and/or
the child at this early stage.

6. As a graduation present, a student received a new car from her uncle.
She already has established three years’ worth of no claims driving. She
is not sure, however, if she should purchase comprehensive insurance (in
addition to the compulsory third party, fire and theft) on the car, which
would add an additional 300 euro to the price of the insurance.

Of these six decision making scenarios, the first three may be viewed as
games. The political party will clearly make its decision in light of what it
believes the other parties might do, with the ultimate objective of attracting
the most followers. The computer manufacturer wants to secure the contract
and make a profit, in spite of knowing that it might have to lower prices to
compete with other manufacturers. The management executive body knows
that the package offered will influence the decision to accept the post and
will probably have some impact on the resulting decisions the new CEO will
make for the company. The later three decisions are made under uncertainty,
but with no clearly intelligent competitor or decision maker influencing the
ultimate action. The traveler to Africa knows that the decision to buy tablets
hinges on the unknown exposure to mosquitoes (state of nature) she will
encounter, while the young couple can only imagine the (noncompetitive)
future in terms of their family health and welfare. The new car owner has
to make a decision on the basis of the likelihood of her (possibly random)
involvement in a future accident with the car.

The action or strategy which a decision maker ultimately takes will, of
course, depend on the criterion adopted for making a decision. In any given
situation there may be several possible criteria to consider. In Section 8.2,
we will concentrate on the minimax criterion. We will consider zero-sum
two-person games, but also give examples of variable-sum games where coop-
eration would be useful to both parties (as in the classical Prisoner’s Dilemma
problem) but in fact often does not exist. In Section 8.3 we consider the gen-
eral area of decision making under risk, using both the minimax and Bayes
criteria in situations where one tries to cope with the unknown state of nature.
We do not assume that nature is either competitive or intelligent. However,
the degree of uncertainty in nature might be reduced by experimentation or
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the collection of additional sample information. Of course, this often must be
done at a cost, hence one may want to determine what it is worth paying to
get it! In Section 8.4, the concept of utility is briefly treated as an alternative
value system to a strictly monetary one.

The foundations of decision and game theory can be a useful tool for the
insurance analyst. Some interesting references for applications in insurance
are Borch [6] (game theory and automobile insurance), Lemaire [34] (cost al-
locations), Lemaire [36] (cooperative game theory and insurance), and Pollack
[50] (game theory and reinsurance).

8.2 Game theory

Many of the ideas in game theory, including much of the commonly used ter-
minology and the idea that conflict can be mathematically modeled, originate
with the classic (1944) text The Theory of Games and Economic Behavior
by von Neumann and Morgenstern [58]. The basic components in a game
include the players, the actions and/or strategies, and the payoffs. By an
action, we shall mean a choice or option for one of the players. We shall also
sometimes refer to an action as a pure strategy, whereby with probability 1
that action is taken! Often, however, a strategy for a player can be something
more general; for example, it may involve the player making a decision about
which action to take on the basis of some information that comes to hand,
or on the basis of observing some random device (a mixed or random strat-
egy). Each person has a set of possible actions or options open to them, and
subsequent to the selection of an action by each player, there is a resulting
payoff for each player. When the payoffs for each possible set of actions (or
strategies) by the n players sum to 0, then the game is called a zero-sum
n-person game, and otherwise it is called a variable-sum game. There may
be any number n of players in a game, although in this treatment we shall
restrict consideration to two-player (two-person) games. In game theory we
generally assume that the other players (or opponents) are intelligent, and in
many cases working against us (noncooperative competitors). They will often
be trying to outmaneuvre us, and in some cases would not be beyond spying
on us.

It should be noted that game theory itself does not necessarily prescribe the
ideal strategy for each player. If, however, the players have specified objectives
or criteria in mind (for example, to minimize their maximum expected loss),
then the theory outlines the strategy that the players should take. On the
other hand, if these objectives do not exist or are not important to the players,
then the theory will be useless in describing their ideal behavior. Our study of
game theory may seem somewhat idealistic or simplistic, but understanding
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the essential aspects of the theory can be very useful for decision making in
the social sciences, economics, political science, business, industrial relations
and military strategy – to name but a few. Our treatment begins with a
discussion of zero-sum two-person games using the minimax and Bayes criteria
for deciding on a strategy. The classical minimax theorem states that in such a
game, there are optimal (usually mixed or random) strategies for both players,
yielding what is called the value ν of the game. The Prisoner’s Dilemma
provides a classic example of a variable-sum game where competition hurts
both players and cooperation may be hard to come by.

8.2.1 Zero-sum two-person games

Assume that the two players A and B in a zero-sum game have actions A =
{a1, . . . , ar} and B = {b1, . . . , bc} open to them, respectively. The results or
payoffs of the game may be represented by an r × c matrix P of losses for
player B, where a loss for B is a gain for A and vice versa (hence the term
zero-sum). In the matrix P the payoff Li,j represents the loss to player B (or
equivalently the gain to player A) when A chooses ai and B chooses bj . How
the payoff matrix for a game is viewed or presented (for example, as losses to
B, gains to A, or otherwise) is often a matter of preference. When each player
has two possible actions, the payoff matrix (of losses for B) has the form given
in Table 8.1.

TABLE 8.1

Payoff matrix P for a
zero-sum two-person
game.

Player B
b1 b2

Player a1 L1,1 L1,2

A a2 L2,1 L2,2

P

Usually, we assume that players A and B must make their choice of action
without any knowledge of what the other player is doing, and that once a
player has made her (his) choice, it cannot be changed. In general, we will be
asking: What actions or strategies will A and B select? We can answer this
assuming A and B reason in certain (rational) ways. Once we know this, we
can determine what is called the value ν of the game – that is, the expected
payoff given that A and B are using their “optimal” strategies.

In some situations, we may eliminate certain actions or strategies for a
player as they are dominated by others. One action for a player is said to
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dominate another action, if the choice of the first action always (no matter
what the opponent does) leads to a payoff which is at least as good as that
when using the second action, and in some circumstances better.

Example 8.1

The matrix P1 below (Table 8.2) is a payoff matrix for a zero-sum two-person
game involving Alison (A) and Brian (B), both of whom are intelligent people.
This is a loss matrix for B, hence if B selects b3 and A selects a2, then B loses
3. On the other hand, if B chooses b2 and A chooses a1 then B loses −1, or
gains 1.

TABLE 8.2

Loss matrix P1 for Brian.
Brian

b1 b2 b3 b4
a1 3 -1 1 4

Alison a2 1 3 3 2
a3 5 1 2 7

B (Brian) is interested in minimizing his loss to A (Alison). No matter
what choice A makes, the loss B will incur by choosing b2 is less than (or
equal to) the loss incurred by choosing b3. We say that action b2 dominates
action b3 for player B, or, equivalently, that action b3 is dominated by action
b2. Similarly, b1 is always better for B than b4 is, and b4 is dominated by
b1. B will never choose b3 or b4 (they are inadmissable), thus for all practical
purposes the game reduces to the 3×2 (loss) payoff matrix P11 given in Table
8.3 (both A and B being intelligent realize this).

TABLE 8.3

Loss matrix P11.
Brian
b1 b2

a1 3 -1
Alison a2 1 3

a3 5 1

Of course, A is interested in maximizing her gain from B. She further realizes
that in choosing strategy a3 she is guaranteed a higher payoff (or gain) than
if she uses strategy a1, no matter what B chooses to do. Again, using the



270 DECISION AND GAME THEORY

terminology above, strategy a3 dominates strategy a1 for her. Therefore the
game further reduces to the 2×2 payoff matrix P12 given in Table 8.4.

TABLE 8.4

Loss matrix P12.
Brian
b1 b2

Alison a2 1 3
a3 5 1

Disregarding dominated strategies in Example 8.1 has reduced the com-
plexity of the problem, but still has not revealed the optimal strategies for A
and B. To solve the game (find “optimal” strategies for A and B, and the cor-
responding payoff) we must make an assumption about the decision making
criteria of the players. There are various criteria which an intelligent person
might consider in picking a strategy. A very basic but somewhat pessimistic
(and risk averse) criteria to use is the minimax criterion. When using the
minimax criterion, a player determines the worst that can happen for each
possible strategy (in fact, the player “expects” the worst), and then selects
that strategy which minimizes this quantity. If a payoff matrix possesses what
is called a saddle point, then the minimax strategy will be a pure strategy for
both players. Otherwise, random or mixed strategies may be employed. Other
criteria that are sometimes used are the minimax regret criterion (see [14])
and the very optimistic maximin criterion. The minimax regret criterion uses
a minimax approach to a regrets matrix (as opposed to a payoff matrix).
When using the maximin criterion, one determines for each possible strategy
the best that can happen (in fact, “expecting” the best to happen), and then
selects that strategy which maximizes this quantity. Our treatment of game
theory, however, will concentrate on the minimax criterion.

8.2.2 Minimax and saddle point strategies

If players A and B are using the minimax criterion in a game (with payoff
matrix of losses for B), then B will choose his strategy by minimizing his
maximum expected loss while A will try to maximize her minimum expected
gain. Under minimax, we know that players adopt a pessimistic view, consid-
ering (and expecting) only the worst possible outcome for each strategy. The
strategy giving the least worst outcome is then selected.
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Example 8.2
Players A and B compete in a zero-sum game with payoff matrix P2 given in
Table 8.5. If B is using the minimax criterion, then he decides between b1, b2
and b3 by comparing the worst possible loss he would incur when choosing
each of these actions. For example, if B uses action b1, then he could (and
expects to) lose as much as 6, while similarly, for actions b2 and b3 he could
lose as much as 8 and 4, respectively. The least of these possible worst losses
is therefore 4, and hence this implies that b3 is the action or pure strategy
which minimizes the maximum loss incurred by B.

Similarly, we can show that a2 is the action which maximizes the minimum
gain for A. Therefore when A and B use the minimax criterion to decide on a
pure strategy, A will go for a2 and B for b3. B has an expected maximum loss
of 4 (expected loss ceiling), while A has an expected minimum gain (expected
floor gain) of 4. The value of the game is therefore 4. If player B were offered
5 to play the game, he would probably do so (since he would have an expected
gain of at least 5− 4 = 1).

TABLE 8.5

Loss matrix P2 for player B.
Player B
b1 b2 b3

a1 -2 8 3
Player A a2 6 7 4

a3 2 0 -4

In Example 8.2 the payoff matrix possesses what is called a saddle point, and
in such a case one need not go through such an argument to find the minimax
solution to the game. A saddle point for a loss payoff matrix, if it exists, will
be the lowest payoff in its row, and the highest in its column. In the payoff
matrix P2, note that the payoff L2,3 is such a point. The minimax theorem
in game theory (which we will discuss later) implies that if the payoff matrix
for a game has a saddle point, then the minimax strategies for both players
A and B are the pure strategies determined by it. Moreover, such a saddle-
point strategy both minimizes B’s expected (maximum) loss and maximizes
A’s expected (minimum) gain, and furthermore the payoff at the saddle point
is the value ν of the game. In Example 8.2, since L2,3 = 4 is a saddle point,
B would (use the pure strategy and) always select b3 while A would always
select a2. Moreover, the value of the game is 4.

A saddle point in a payoff matrix is a point of equilibrium for a game in
the sense that if both A and B are employing saddle-point based strategies,
then neither A nor B can benefit from knowing that their opponent is using
the minimax criterion. For example, suppose that in the game with payoff
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matrix P2, B (who wants to use a minimax strategy) has been told that A is
going to use a minimax strategy. Then this information will not change B’s
decision to use the action (or pure strategy) b3. In fact, any move away from
this saddle-point strategy for B will worsen the situation, assuming A stays
put at her saddle-point strategy a2.

Another interesting aspect of a saddle-point strategy is that it is a spy-
proof strategy if both players are capable of spying. A player in a game may
know that their opponents are intelligent, but other than that they might not
know much more about how they are thinking. In some important games (for
example, in setting next year’s premium for a motor policy in a competitive
market) a player might be worried about the possibility that an opponent is
spying. A minimax strategy is said to be spy-proof in the sense that none of
the players can benefit from knowing what the others are doing. For instance,
in Example 8.2, suppose A is considering using a1 instead of a3. Knowing
this (by spying), B will consider moving from b3 to b1. Now if A knows this
(again by spying), then she will consider moving on to a2. However, then in
turn B (knowing this) will move back to b3 and both are now at the minimax
strategies.

Not all payoff matrices for zero-sum two-person games have a saddle point,
as the following example shows.

Example 8.3

Table 8.6 gives the payoff matrix P3 in terms of losses for player B when
playing against A. Y would be a saddle point if and only if it were both larger
than 7 and less than −5, which is impossible. Similarly, X could only be a
saddle point if both X ≥ 4 and X ≤ 1, which again is impossible. On the
other hand L3,3 = 4 would be a saddle point if X ≤ 4.

TABLE 8.6

Payoff matrix P3.
Player B

b1 b2 b3 b4
a1 Y -5 3 12

Player A a2 7 6 X 1
a3 5 9 4 7

Consider the above game when Y = 1 and X = 0, with the resulting loss
matrix P31 for player B as given in Table 8.7. Then L3,3 = 4 is a saddle point,
the value of the game is 4, and the minimax pure strategies are a3 for A and
b3 for B. Note that if B knows that A is using the minimax strategy, he cannot
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improve things by moving from b3 to any other pure strategy (in fact, it only
gets worse in the minimax sense). Also, since a saddle point exists here, the
minimax strategy is spy-proof in the sense that if both players can spy on the
other, then both will still stick to the minimax strategy. For example, if A
knows that B is thinking of using strategy b1 instead of strategy b3, she will
move to a2. But, knowing this, B will then move to back to b3, and then in
turn A will move back to a3, yielding once again the minimax solution!

TABLE 8.7

Payoff matrix P31.
Player B

b1 b2 b3 b4
a1 1 -5 3 12

Player A a2 7 6 0 1
a3 5 9 4 7

8.2.3 Randomized strategies

What if no saddle point exists in the payoff matrix of a zero-sum two-person
game? If the payoff table for a game does not have a saddle point, then
the minimax strategy is not spy-proof. Hence if one player knows what the
other intends to do, then this information may be used to her advantage (for
example to use a nonminimax strategy). With this in mind, a player may wish
to randomize their selection of strategies. In this case, a player will not know
in advance what the exact maximum loss may be; however, one may calculate
the expected maximum loss in order to decide on an appropriate randomized
strategy.

Example 1 (continued): Consider again the payoff matrix P12 (Table
8.8) for Alison and Brian (after the dominated strategies have been dropped),
who are conservative in nature and want to apply the minimax criteria for
decision making.

TABLE 8.8

Payoff matrix P31.
Player Brian

b1 b2
a2 1 3

Alison a3 5 1
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No saddle point exists in the resulting payoff matrix, and b2 is the pure
strategy which minimizes Brian’s maximum loss resulting in an expected
(maximum) loss of 3. Alison is indifferent to strategies a2 and a3, as both
have an expected (minimal) gain of 1. These are, however, not the optimal
strategies for either player when using the minimax criterion. In fact, both
players may improve the situation if they consider a strategy which uses a
randomized method (mixed strategy) to choose between possible pure actions
or strategies. The use of randomization in the selection of your actions has
the appealing aspect that it counteracts to a certain extent the knowledge
that your opponent is intelligent and may try to reconstruct how you think.
(For example, if you are playing a tennis match and your opponent knows
that your powerful serve is your greatest strength, you still might want to
randomly deliver a slow serve to keep him alert.)

Consider the randomized strategy for Brian (see Table 8.9), in which he
randomly chooses between b1 (with probability q) and b2 (with probability
1− q) . With such a strategy, the maximum loss to Brian is no longer deter-
ministic, but in fact is a random quantity or variable. If Alison chooses a2,
Brian can expect to lose (on the average) La2(q) = 1q+3(1−q) = 3−2q, while
if Alison chooses a3, B can expect to lose La3(q) = 5q + 1(1− q) = 1 + 4q.

TABLE 8.9

Mixed strategy for Brian.

q × b1 + (1− q)× b2

Alison’s a2 La2(q) = 3− 2q
Action a3 La3(q) = 1 + 4q

Expected loss for Brian

Using a minimax criterion, Brian wants to use a strategy which minimizes
the maximum expected loss, that is, to select q to minimize

max[La2(q), La3(q)] = max[3− 2q, 1 + 4q].

Since La2(q) is a decreasing function of q on the interval [0, 1] while La3(q) is
increasing, the function max[3− 2q, 1 + 4q] is minimized where the two func-
tions of q meet or intercept. Solving, one obtains q = 1/3, and Brian has re-
duced his expected (maximum) loss from 3 to 7/3 by employing a randomized
strategy (randomly selecting b1 with probability 1/3 and b2 with probability
2/3). Similarly, a randomized strategy for Alison will increase her expected
(minimum) gain from 1 to 7/3. What precisely is this optimal randomized
strategy for A (see Problem 2)? We say that 7/3 is the value of the game.
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In general, when no saddle point exists, players should employ randomized
strategies with probabilities chosen to adhere to the minimax theorem.

In general, if a payoff matrix P represents the losses for B in a zero-sum
game with player A, then using (pure) minimax strategies, B has an ex-
pected maximum loss of νB(pure) = minj [maxi(Li,j)], while A has an ex-
pected minimal gain of νA(pure) = maxi[minj(Li,j)]. It is easy to show that
νA(pure) ≤ νB(pure), and that, in fact, they are equal if and only if the matrix
P has a saddle point. When they are not equal at least one of the play-
ers (normally both) can improve their situation by using randomized strate-
gies. Suppose player B has possible actions {b1, b2, . . . , bc} open to him and
q = (q1, q2, . . . , qc) is a probability vector. B may use the mixed strategy
determined by the vector q whereby he selects to take action bj with proba-
bility qj for j = 1, . . . , c. If similarly, player A randomly selects the possible
actions A = {a1, . . . , ar} with respective probabilities p = (p1, . . . , pr), then
the expected payoff (loss for B and gain for A) is given by

∑
piLi,jqj .

Let Q and P represent the sets of possible random strategies for B and
A, respectively. Player B would worry about what particular strategy p
player A will use, and hence would try to find a strategy q to minimize
[maxpεP

∑
piLi,jqj ]. This would result in an expected (maximum) loss of

νB = minqεQ[maxpεP

∑
piLi,jqj ]. Similarly, the best mixed strategy for

player A is that p ε P which maximizes [minqεQ

∑
piLi,jqj ], yielding an ex-

pected minimum gain of νA = maxpεP[minqεQ

∑
piLi,jqj ] for player A.

The Minimax theorem is the most important result in game theory, which
says that νA and νB are equal (see [46]). Hence there exist mixed strategies
p∗ and q∗ for players A and B, respectively, which are optimal for both, and
where the expected (maximum) loss for B equals the expected (minimum)
gain for A. This common value ν is called the value of the game, where

maxpεP[minqεQ

∑
piLi,jqj ] = νA

= ν

= νB = minqεQ[maxpεP

∑
piLi,jqj ].

Example 8.4
The payoff matrix P4 in Table 8.10 represents a zero-sum game between two
intelligent players A and B. Here a positive payoff represents a gain to player
A (and consequently, a loss gain to player B).

Assuming a minimax criterion for both players, b3 is an inadmissable strat-
egy for B, and there is no saddle point. Player A is considering a mixed
strategy where she randomly uses a1 with probability p and otherwise uses
a2. Her expected gain if B uses b1 is 10p+3(1−p) = 7p+3, while if B uses b2
it is −4p+ 7(1− p) = 7− 11p. As player A is conservative, she considers the
minimum of these two quantities, and wants to find the value of p maximizing
it. The maximum over p of min[7p+ 3, 7− 11p] occurs at p = 2/9 where the
two lines intersect. Therefore the minimax (mixed) strategy for A is to select
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TABLE 8.10

Payoff matrix P4.
Player B
b1 b2 b3

Player a1 10 -4 12
A a2 3 7 5

a1 with probability p = 2/9 (and a2 with probability 7/9). Similarly, B would
select b1 with probability q = 11/18 and otherwise select b2. The value of the
game is ν = 41/9.

Example 8.5

Table 8.11 gives the payoff matrix P5 for a zero-sum game between two in-
telligent players A and B. The entries represent losses to player B, and hence
gains to player A. Clearly b3 is inadmissable for B as it is dominated by b1.
Player A has therefore a pure minimax strategy of a2 with expected minimum
gain of 1, while B has a pure minimax strategy of b1 with expected maximum
loss of 3. The value of the game ν therefore satisfies 1 ≤ ν ≤ 3.

TABLE 8.11

Payoff matrix P5.
Player B
b1 b2 b3

a1 3 -2 5
Player A a2 1 4 2

a3 -2 5 0

Randomly selecting b1 with probability q (and b2 with probability 1− q), B
wants to find q which minimizes function maxq[5q − 2, 4− 3q, 5− 7q] (which
is plotted in bold in Figure 8.1). This minimum occurs at q = 3/4, leading
to a game value of ν = 5(3/4) − 2 = 7/4. On the other hand, player A
wants to select a1, a2 and a3 with probabilities p1, p2 and p3 = 1− p1− p2, in
order to maximize min(p1,p2)[5p1 + 3p2 − 2,−7p1 − p2 + 5]. This must occur
when these two expressions are equal, or where 12p1 + 4p2 = 7. The function
5p1 +3p2−2 is maximized on the line segment joining (7/12, 0) and (3/8, 5/8)
at (p1, p2) = (3/8, 5/8), giving (also) a game value of 7/4 when p1 = 3/8 and
p2 = 5/8. The optimal mixed strategy for A is therefore to select a1 with
probability 3/8 and a2 with probability 5/8 (and to never select a3).



GAME THEORY 277

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

4
5

q

E
xp

ec
te

d 
Lo

ss
es

 fo
r 

B

FIGURE 8.1
Optimizing q for player B (Example 8.5) by minimizing max[ 5q-2, 4-3q, 5-7q ].
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8.2.4 The Prisoner’s Dilemma and Nash equilibrium in
variable-sum games

In a two-person zero-sum game the loss to one player is a gain to the other,
and hence one need only know one of these quantities to determine the other.
In a variable-sum game this need not be the case, and the payoffs (which we
will assume are gains) for A and B, respectively, will be written in the form
Li,j = (α, β). When α + β = 0 for all i and j, then we have a zero-sum
game. The following classic example of a two-person variable-sum game is
interesting and somewhat paradoxical.

Example 8.6 Prisoner’s dilemma

Two prisoners A and B have a dilemma. Having been accused jointly of a
serious crime and arrested, they are about to be questioned separately about
their alleged participation in the crime. In confessing to involvement, they
know they face a sentence of as much as 15 years. If they both confess then
each gets a sentence of 10 years, while if they both deny each sentence is 3
years. On the other hand, if one confesses and the other does not, then the
confessor gets off free (with no sentence) while the other gets a sentence of 15
years. This is an example of a variable-sum two-person game, as the sum of
the payoffs is not constant and varies with the actions taken by the prisoners.

Prisoner A thinks that if B is considering denying involvement (Deny),
then he will certainly prefer a payoff of 0 to −3, and hence will confess to the
crime. On the other hand, if he thinks that B is going to confess, then he
would certainly prefer −10 to −15 and thus will also confess. This thinking
is indicated by the downward arrows ↓ in Table 8.12. Similarly, B will decide
to confess both when A decides to Deny or Confess (indicated by the right
arrows →) in Table 8.12, due to the symmetry of the situation. Hence no
matter what one player does, the other will prefer to confess. However, it is
clear that the payoffs for both would be better if they both (cooperated and)
denied the crime, and herein lies the dilemma!

TABLE 8.12

The Prisoner’s dilemma!
Prisoner B

Deny Confess

Deny (-3, -3 ) → (-15, 0 )
Prisoner A ↓ ↓

Confess ( 0, -15 ) → (-10, -10 )

Payoffs for Prisoners A and B: (gain for A, gain for B)
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The pair of actions (Confess, Confess) in the Prisoner’s dilemma is an ex-
ample of what is called a point of Nash equilibrium ([43], [44]). At such a
point, knowing that the other is intending to confess does not lead a prisoner
to change his own decision to confess. A Nash equilibrium point in a game
represents a steady state in the sense that any one player will not move away
from this point knowing what the other is doing. Although such a point is
not necessarily an optimal point for all players (as in the Prisoner’s dilemma),
when they exist they represent a type of solution for the game.

For a variable-sum two-person game where player A can take actions A =
{a1, . . . , ar} and B can take actions B = {b1, . . . , bc}, we let Lij = (αij , βij)
represent the payoffs to A and B when they, respectively, take actions ai and
bj . If player A prefers action ak over ai when B takes action bj , we denote
this preference by (ak, bj) ≥A (ai, bj). Similarly, we write (ai, bk) ≥B (ai, bj)
if player B prefers action bk to bj when A is taking action ai. If player A
knows that player B is intending to use action bj , then the best response
(best possible action to take) for A is the (set of) action(s) A(bj) = {alεA :
(al, bj) ≥A (ai, bj) ∀aiεA}. This set-valued function is called the best response
function for player A (note that A(bj) would be the empty set φ when there
is no best response for A), and, similarly, we can define the best response
function for player B.

The pair of actions (a∗, b∗) for players A and B, respectively, represents a
Nash equilibrium point for the game if

(a∗, b∗) ≥A (ai, b∗) for all i = 1, . . . , r and
(a∗, b∗) ≥B (a∗, bj) for all j = 1, . . . , c,

or, equivalently, a∗εA(b∗) and b∗εB(a∗). In a variable-sum two-person game,
there may be several Nash equilibrium points, but also there may be none.

In the Prisoner’s dilemma, the best response functions for A and B satisfy
A(Deny) = A(Confess) = B(Deny) = B(Confess) = {Confess}, and hence
(Confess, Confess) is the unique Nash equilibrium point for the game. In
a zero-sum two-person game with a saddle point, the saddle-point actions
represent the unique Nash equilibrium point for the game.

The following Example 8.7 has two Nash equilibria, and historically has
been known as the Battle of the Sexes (see Luce and Raiffa [39]) or Bach or
Stravinsky (see Osborne and Rubenstein [45]). Pollack [50] argues that most
reinsurance transactions may be viewed as (Prisoner’s dilemma type) games
between the cedant and reinsurance companies.

Example 8.7 Rugby or Football?
Two brothers Alan and Bart both are avid sports fans, but Alan’s favorite is
rugby while football is Bart’s favorite. They do enjoy going to sporting events
together, however, and must (separately) make a decision for this coming
Saturday when simultaneously important games are being played locally in
both rugby and football. The payoff matrix for the game is given in Table
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8.13, and the brothers are interested in cooperating to the benefit of both.
Given the payoff matrix (of gains to both) below, what should each brother
do?

TABLE 8.13

Rugby or Football?
Bart

Rugby Football

Rugby (20, 15) (10, 10)
Alan

Football (10, 10) (15, 20)

Payoffs for Alan and Bart: (gain for Alan, gain for Bart)

The best response function for Alan is given by A(Rugby) = {Rugby}
and A(Football) = {Football}. The best response function for B is identical.
There are two optimal strategies in this game, namely (Rugby,Rugby) and
(Football, Football), and both are Nash equilibria.

8.3 Decision making and risk

In a game theoretic situation, we determine our strategy and make a deci-
sion on what to do assuming that our opponents are intelligent and generally
speaking in competition with us. There are, however, many scenarios where
knowledge of unknown factors could be informative in deciding on a deci-
sion strategy, but where it is perhaps inappropriate to assume that we have
intelligent opponents working against us! Statistical inference (for example,
the estimation and testing of means, variances and regression coefficients from
some population) may sometimes be viewed as a game between Nature (which
controls the features of the relevant population) and the Statistician (who tries
to guess or estimate nature’s choice θ on the basis of sample information). We
shall refer to θ as the state of nature, which in some cases is a population pa-
rameter of interest. The statistician (or other decision maker) will then make
a decision or take a course of action on the basis of the observed sample and
some decision making criterion. For example, a decision to go ahead with an
outdoor concert may depend on the weather (state of nature θ) on the day in
question. A quality weather forecast (sample X) may be helpful in making
this decision.

In such a decision making scenario, we define a loss function which details
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the penalty incurred by the statistician for each combination of the popu-
lation characteristic θ and the statistician’s choice of action a. Unlike the
games considered in the previous section, we do not necessarily assume that
Nature is our competitor, or is trying to outdo us. In many cases, we may
have additional information (sample information X) which may be useful in
inferring something about what nature is doing, and hence in deciding on a
strategy to employ.

The statistician normally uses a decision function d in deciding upon his
estimate of the unknown state of nature θ. Supplied with some sample infor-
mation X, we let d(x) be the statistician’s choice of action which results from
observing X = x. Mathematically, d is a function from the sample space to
the set of possible actions or strategies A for the statistician. A number of
possible decision functions usually exist, many of which are inadmissable or
otherwise not appropriate. Decision theory tries to identify the best decision
function in terms of the possible losses to the statistician, using some criterion
like minimax or Bayes.

Example 8.8 Fair Die or an Ace-Six Flats?
A statistician must decide whether or not a six-sided die is Fair or has been
weighted to be an Ace-Six Flats die. With a loaded Ace-Six Flats die, the
probabilities of a 1 or 6 are both 1/4, while the other possibilities (2, 3, 4, 5)
have equal probabilities of 1/8. She is not allowed to examine the die, but the
die is to be rolled once and she will be told that either the result is an Ace or
a Six (X = 1), or that it is some other number (X = 0). She incurs a loss of
1 if she makes the wrong decision. Table 8.14 gives the payoff matrix for this
decision making scenario.

TABLE 8.14

Ace-Six Flats?
Statistician

decides
State of nature a1 = Ace-Six Flats a2 = Fair
θ1 (Ace-Six Flats) L1,1 = L(θ1, a1) = 0 L1,2 = L(θ1, a2)= 1
θ2 (Fair die) L2,1 = L(θ2, a1) = 1 L2,2 = L(θ2, a2) = 0

Losses for statistician

The sample information X indicates whether a toss of the die gives an
Ace or Six (X = 1) or not (X = 0), hence there are only four decision
functions for the statistician as given in Table 8.15. For example, d1 is the
decision function which decides that the die is Ace-Six Flats when (X = 1),
and otherwise decides the die is Fair. What is the most appropriate decision
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function d for the statistician to use?

TABLE 8.15

Decisions functions for Ace-Six Flats.
Decision function

Sample X d1 d2 d3 d4

X = 1 (1 or 6 observed) a1 a1 a2 a2

X = 0 (2, 3, 4 or 5 observed) a2 a1 a2 a1

The risk function of a decision function (or strategy) is a useful tool in
comparing decision functions. The risk function for decision function dj is a
function of the state of nature θ, defined to be the expected loss incurred if we
use dj when the state of nature is θ. We denote the risk function for dj when
the state of nature is θi by

R(dj , θi) = EX [L(θi, dj(X))].

For example,

R(d1, θ1) = E[L(θ1, d1(X))]
= L(θ1, d1(1)) · P (X = 1 | θ1) + L(θ1, d1(0)) · P (X = 0 | θ1)
= L(θ1, a1) · 1/2 + L(θ1, a2) · 1/2
= 0 · 1/2 + 1 · 1/2 = 1/2, and

R(d1, θ2) = E[L(θ2, d1(X))]
= L(θ2, d1(1)) · P (X = 1 | θ2) + L(θ2, d1(0)) · P (X = 0 | θ2)
= 1 · 1/3 + 0 · 2/3 = 1/3.

Table 8.16 gives the values of the risk functions for the decision functions
d1, d2, d3 and d4.

TABLE 8.16

Risk functions for Ace-Six Flats.
Decision function

State of nature d1 d2 d3 d4

θ1 (Ace-Six Flats) 1/2 0 1 1/2
θ2 (Fair) 1/3 1 0 2/3

A look at the table of risk functions indicates that we can discard decision
function d4 (d4 is inadmissable), since it is dominated by d1. This is not too
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surprising since d4 is an unusual decision procedure in that it says conclude
the die is Ace-Six Flats if and only if one does not observe an Ace or a Six!
We can therefore restrict consideration to Table 8.17, which gives the risk
functions for (d1, d2, d3). Note, however, that we still have not chosen a best
decision function! We can decide between d1, d2 and d3 on the basis of either
of two criteria – minimax or Bayes.

TABLE 8.17

Reduced set of risk functions for
Ace-Six Flats.

Statistician
State of nature d1 d2 d3

θ1 (Ace-Six Flats) 1/2 0 1
θ2 (Fair Die) 1/3 1 0

8.3.1 The minimax criterion

The statistician should choose the strategy which minimizes the maximum
value of the risk function. That is, we choose di, where maxθR(di, θ) =
minj [maxθR(dj , θ)], or in other words the maximum value of the risk function
for di is less than that for any other strategy dj . This criterion is clearly
analogous to choosing the minimax strategy in game theory.

In the Ace-Six Flats example, the statistician should use decision function
d1 under the minimax criterion. In other words, the minimax decision would
be to say the die is Ace-Six Flats if either an Ace or Six is observed with a
throw, and otherwise to say the die is fair. In “games” against nature we gen-
erally do not employ randomized strategies, since we do not consider nature
a malevolent opponent (an opponent who tries to maximize the statistician’s
loss). In this example, the die is either Ace-Six Flats or Fair (balanced).
Nature does not think about its strategy to try to beat the statistician!

8.3.2 The Bayes criterion

The Bayesian approach to statistical inference is the basis for the Bayes crite-
rion in decision theory. We regard the unknown state of nature θ as a random
variable with some probability distribution (the prior distribution of θ). We
then choose the decision function which minimizes the expected value of the
risk function (where the expectation is taken over θ). That is, we choose di

where

Eθ(R(di, θ)) = minjEθ(R(dj , θ)).



284 DECISION AND GAME THEORY

In Example 8.8, a prior distribution on θ would be of the form:

P (θ = Ace-Six Flats) = p and P (θ = Fair) = 1− p.

Hence

Eθ(R(d1, θ)) = (1/2) · p+ (1/3) · (1− p) = 1/3 + 1/6p
Eθ(R(d2, θ)) = 0 · p+ 1 · (1− p) = 1− p, and
Eθ(R(d3, θ)) = 1 · p+ 0 · (1− p) = p.

The Bayes decision function will depend on the prior distribution on θ, or
in other words on the value of p. Clearly, the Bayes decision function is d3

if 0 < p < 2/5, d1 if 2/5 < p < 4/7, and d2 otherwise. For example, if
one felt that there is a 50% chance that the die is Ace-Six Flats, then the
Bayes decision rule would be to say that the die is Ace-Six Flats if a 1 or 6 is
observed, and Fair otherwise.

Example 8.9
A veterinarian is asked to inspect a farm animal for bovine tuberculosis (TB),
and ultimately decide whether or not to declare it a reactor (in which case it
must be destroyed) – otherwise, it is deemed to be healthy. The state of nature
here is the true health of the animal, and we let θ1 denote that the animal
has TB and θ2 that the animal does not. The veterinarian performs a test
on the animal prior to making a decision, with a result of X = 1 indicating a
positive test (suggesting the animal has TB) and X = 0 indicating a negative
test. Unfortunately, as is the case with many tests, the test is good but not
perfect. For example, it is assumed that P (X = 1 | θ1) = 0.9 and that
P (X = 0 | θ2) = 0.8. Hence in particular there is a 20% chance of a false
positive and a 10% chance of a false negative.

The situation may be described by the payoff (loss) matrix for the owner
of the animal given in Table 8.18. The losses have been coded, and note for
example that the biggest loss occurs if the animal is diseased but it is not
detected. The smallest loss occurs in the situation where the animal does not
have TB and the test support this.

TABLE 8.18

Veterinarian’s decision
R = Reactor NR = Not Reactor

State of θ1 (TB) L(θ1, R) = 2 L(θ1, NR) = 6
animal θ2 (No TB) L(θ2, R) = 4 L(θ2, NR) = 0

As the test (sample) information X takes only two possible values (X = 1
if the test is positive and X = 0 if it is negative), there are only four possible
decision functions as given in Table 8.19.
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TABLE 8.19

Decision functions for veterinarian
Sample (Test) X d1 d2 d3 d4

X = 1 (positive) R R NR NR
X = 0 (negative) NR R NR R

For example, d1 is the decision function which decides that the animal is a
reactor (R) if the test is positive and not a reactor (NR) otherwise. Now

R(d1, θ1) = E[L(θ1, d1(X))]
= L(θ1, d1(1)) · P (X = 1 | θ1) + L(θ1, d1(0)) · P (X = 0 | θ1)
= L(θ1, R) · 0.9 + L(θ1, NR) · 0.1
= 2 · 0.9 + 6 · 0.1 = 2.4.

Table 8.20 gives the values of the risk functions for the decision functions
d1, d2, d3 and d4. Note in particular that d4 is inadmissable (dominated by
d1). The minimax decision strategy is d1.

Suppose that p = P (θ = θ1 = TB) is an appropriate indicator of the
incidence of TB. Then

Eθ[R(d1, θ)] = 1.6p+ 0.8, Eθ[R(d2, θ)] = 4− 2p, and Eθ[R(d3, θ)] = 6p.

One may therefore show that if p is small (p < 2/11), then d3 is the Bayes
decision rule and hence one should (irrespective of the test) declare the animal
to be free of TB. On the other hand, if 2/11 < p < 8/9, then d1 is the decision
rule, while if 8/9 < p then the Bayes decision rule is d2 (declare the animal
to be a reactor irrespective of the test).

Hence the Bayesian strategy is clearly dependent on the value p which one
assumes for the incidence of TB. Note also that the Bayesian strategy also
clearly depends on the values in the (loss) payoff matrix, and different values
in this matrix (representing more realistic losses?) could lead to different
decisions.

TABLE 8.20

Risk functions for veterinarian
d1 d2 d3 d4

State of θ1 (TB) 2.4 2 6 5.6
animal θ2 (No TB) 0.8 4 0 3.2

Example 8.10
The IT section of a large company is to invest in a new computer system for
the company’s employees, and the decision will ultimately be one concerning
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the size of the system as follows: a1 → large system, a2 → medium system, or
a3 → small system. There is a question as to how the employees will take to
the new system, and Table 8.21 gives a fair summary of the payoff (profit) to
the company in dollars over the next year depending on the size of the system
purchased. Amongst the three possible actions the IT section may take, a3

(go with the small system) has the largest minimum gain (of 130,000), and
hence is the minimax action (or pure strategy).

TABLE 8.21

IT Gains (profit) matrix.
Size of system purchased

Nature large medium small
θ1 (high acceptance) 410,000 310,000 210,000
θ2 (low acceptance) -30,000 50,000 130,000

Assume that prior information suggests that there is a 60% chance that
the employees will find the new system acceptable. Then the expected profits
($000′s) for the actions a1, a2 and a3 are 234, 206 and 178, respectively. Thus
the Bayes action would be a1 (that is, to go for the large system).

A local marketing company can be used to make a prediction concerning the
acceptance of the system to employees. On the basis of an employee survey
they will make a prediction X, where X = 1 indicates that the employees will
generally be favorable to the system and X = 0 indicates that they will not.
Table 8.22 (based on the past record of the marketing company) indicates the
probability of a correct prediction as a function of the state of nature θ.

TABLE 8.22

Market prediction.
Market prediction

Nature P (X = 1) P (X = 0)
θ1 (high acceptance) 0.8 0.2
θ2 (low acceptance) 0.1 0.9

The nine possible decision functions which may be used (depending on the
sample information X observed) are given in Table 8.23. The corresponding
risk functions for each of these as well as the mean value of the risk function
corresponding to the prior distribution (P (θ1) = 0.6, P (θ2) = 0.4) are given
in Table 8.24.
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For example,

R(d2, θ1) = L(θ1, a1)P (X = 1 | θ1) + L(θ1, a2, )P (X = 0 | θ1)
= 410(0.8) + 310(0.2) = 390

and

Eθ[R(d2, θ)] = 390(0.6) + 42(0.4) = 250.8.

TABLE 8.23

IT decision functions.
IT decision functions

Survey d1 d2 d3 d4 d5 d6 d7 d8 d9

X = 1 a1 a1 a1 a2 a2 a2 a3 a3 a3

X = 0 a1 a2 a3 a1 a2 a3 a1 a2 a3

TABLE 8.24

IT risk function values (’000s).
IT risk function values (’000s)

Nature R(d1, θ) R(d2, θ) R(d3, θ) R(d4, θ) R(d5, θ)
high θ1 410 390 370 330 310
low θ2 -30 42 114 -22 50

Bayes risk 234.0 250.8 267.6 189.2 206.0

Nature R(d6, θ) R(d7, θ) R(d8, θ) R(d9, θ)
high θ1 290 250 230 210
low θ2 122 -14 58 130

Bayes risk 222.8 144.4 161.2 178.0

One can see from Table 8.24 that the minimax strategy (the strategy which
in this case maximizes the expected minimum payoff) is d9, while the Bayes
strategy (the one which maximizes the expected risk with respect to the prior
on θ) is d3. The minimax strategy is clearly conservative, going for the smallest
system no matter what the marketing prediction is. The Bayes strategy goes
for the large installation if the market company predicts a high acceptance
rate amongst employees, and otherwise goes for the small system.
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8.4 Utility and expected monetary gain

Faced with making a decision in the face of uncertainty, one often selects the
action or strategy which maximizes expected monetary gain. However, in
many situations this does not yield the most satisfactory action.

Example 8.11

A decision maker is to decide between three courses of action {a1, a2, a3}, and
depending on the true state of nature θ, will gain an amount as indicated in
payoff Table 8.25. The expected monetary gain for both a1 and a2 is 0, while
that of a3 is negative (in fact, action a3 is clearly dominated by a2). Using
the criterion of maximizing expected utility, it follows that a1 and a2 are
equally acceptable and both preferable to a3. For most individuals however,
a likely loss (with probability 0.5) of 500,000 would have very serious negative
consequences, and therefore a2 would definitely be preferable to a1!

TABLE 8.25

Gains for actions in Example 8.11.
Actions

a1 a2 a3 P(θ)
State of θ1 500,000 50 40 0.5
nature θ2 -500,000 -50 -50 0.5

Example 8.12

The payoffs for a decision problem with two possible options {a1, a2} are given
in Table 8.26. Both options have beneficial and high expected monetary gains.
Using the criterion of maximizing expected monetary gains, one would decide
on option a2 over a1, yet most people would in fact go for a1. How does one
explain this behavior?

TABLE 8.26

Gains for options in Example 8.12.
Options

a1 a2 P(θ)
State of θ1 3,000,000 5,000,000 0.5
nature θ2 1,000,000 0 0.5
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Example 8.13

There are 5,245,786 =
(
42
6

)
possible winning combinations in a version of the

Irish National Lottery game LOTTO on any given night. Rules stipulate that
one must make at least two selections on any given go, and this can be done
for 2 euro. If the jackpot is 1,000,000 euro (and one ignores both smaller
prizes and the fact that the jackpot might be shared when won), then Table
8.27 presents a simple analysis of the situation for someone wishing to play
at the minimal level (paying 2 euro to do so). The expected monetary gain in
playing is therefore E(a2) = −1.619, which in particular is negative! So why
do so many people play LOTTO?

TABLE 8.27

Gains for Irish National Lottery LOTTO.
Options

Don’t play Play
a1 a2 P(θ)

State of θ1 (win) 0 1,000,000 -2 2/5,245,786
nature θ2 (lose) 0 -2 1 - 2/5,245,786

Example 8.14

A student has just purchased a new bike with a value of $400, and insurance
cover for theft is available for a premium of $25. Chances that the bike will
be stolen in the next year are estimated to be about 0.05. The decision has
to be made whether or not to purchase insurance for the bike, and Table 8.28
gives a simple overview of the situation. Since E(a1) = −20 > −25 = E(a2),
the no insurance option maximizes expected monetary gain, yet many people
buy bike and other types of insurance. Why is this the case?

TABLE 8.28

Gains table for bike insurance.
Options

No insurance Buy insurance
a1 a2 P(θ)

State of θ1 (no theft) 0 -25 0.95
nature θ2 (theft) -400 -25 0.05
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Although these examples are simple, they do suggest that maximizing ex-
pected monetary gain may not always yield the best or most desirable action
to take. The idea of a utility function is often used to provide an alterna-
tive criterion for deciding on an appropriate action in the face of uncertainty.
The utility function for an individual (or group or company) will normally be
related to the monetary value of a possible action, but it also may take into
account other aspects of its value.

8.4.1 Rewards, prospects and utility

In any decision making situation, one is faced with a set of possible conse-
quences – which may be termed rewards, payoffs, losses, etc. Let us label this
set by R. By a prospect we shall mean a probability distribution on the set
of rewards R, and we will use M to denote the set of all prospects. In par-
ticular, we may view actions or strategies as prospects. In Example 8.14, one
could write R = {−400,−25, 0} and view the action of not buying insurance
as the prospect that puts the probability distribution (0.05, 0, 0.95) on R.
Generally speaking, one assumes that in a decision making scenario the set of
prospects M for the decision maker has the following properties:

• If M1 and M2 are two prospects, then either M1 is preferred to M2

(written M1 >M2), M1 <M2, or they are equally preferable (M1 =
M2).

• M1 ≥M2 and M2 ≥M3 ⇒ M1 ≥M3.

• If M1 > M2 > M3, then there exist probabilities p and q such that
[M1,M3 : p, 1− p] >M2 and M2 > [M1,M3 : q, 1− q].
By [M1,M3 : p, 1− p] we shall mean the prospect which is the p : 1− p
mixture of M1 and M2.

• If M1 >M2 and M3 is another prospect, then [M1,M3 : p, 1 − p] >
[M2,M3 : p, 1− p] when 0 < p < 1.

It can be shown that when the set M of prospects satisfies the above proper-
ties, then there is a (real valued) utility function u : M→ R for the decision
maker such that

• M1 >M2 ⇒ u(M1) > u(M2)

• If M∗ = [M1,M2 : p, 1− p] then u(M∗) = p u(M1) + (1− p)u(M2)

• If M∗ is a prospect with mass or density function pM∗ on R, then
u(M∗) =

∫
u(r)pM∗(r)dr.

Essentially, u assigns to each prospect (corresponding to a strategy or ac-
tion) a real number in such a way that preferences for the individual are pre-
served. Hence the decision maker will select the strategy giving the highest
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utility. Note that the utility of a prospect can be viewed (and is often cal-
culated) as an expected utility over the set of rewards, thus decisions about
what action (or prospect) to take are made using the criterion of maximizing
expected utility.

It should be clear that if one knows the utility function on the set of re-
wards R, then one may determine it on any prospect with this knowledge. In
Example 8.14, if M is the prospect on R = {−400,−25, 0} with probability
distribution (p1, p2, p3), then u(M) = p1 u(−400) + p2 u(−25) + p3 u(0). If
a1 = M1 is the prospect or action of not buying insurance while a2 = M2 is
that of buying insurance, then to say that the decision maker prefers M2 to
M1 means that for her utility function u,

u(M2) = 0.95u(−25) + 0.05u(−25)
= u(−25)
> 0.95u(0) + 0.05u(−400)
= u(M1).

Determining an appropriate utility function for an individual can be done
by assigning utility values to individual concrete rewards and then assessing
the value on various prospects. The utility function for a decision maker is
clearly not unique, for given a utility function u, the function αu+ β for any
constants α > 0 and β will be as useful in decision making as u itself.

For most individuals the utility function is a concave function of monetary
rewards, and this reflects the conservative nature of the majority of people.
Such a person is called a risk avoider (and is risk averse), since he or she
generally prefers the action with lower variability even when deciding between
two prospects with the same expected monetary return. For example, suppose
that R = {10, 30, 40, 50} and M1 and M2 are prospects on R with respective
distributions (1/3, 0, 0, 2/3) and (0, 1/3, 2/3, 0). The expected monetary
return on each is 110/3, but the variation in the return on M1 is greater. For
the risk avoider (with a strictly concave increasing utility function u), this
would be reflected in the inequality

u(M1) = (1/3) u(10) + (2/3) u(50)
< (1/3) u(30) + (2/3) u(40)
= u(M2).

The risk avoider also has a decreasing marginal value for money (an addi-
tional 1000 is less enticing to the individual the wealthier she becomes). If
the utility function for an individual is convex, then such a decision maker
is called a risk taker. In some (rare) cases the utility function is linear in
monetary value (and hence decision making reduces to selecting the strategy
with the smallest expected monetary value).



292 DECISION AND GAME THEORY

8.4.2 Utility and insurance

The fact that most individuals are risk avoiders underlies the basis of insurance
and the resulting premiums charged to purchase it. Suppose that an individual
with wealth w is subject to a random loss X and is interested in insuring
against this loss. What is the maximum amount P that such a person is
willing to pay? The insurance company will find it necessary to charge an
amount at least as large as E(X) in order to make a profit, as well as to cover
claims and overheads.

A classic inequality of Jensen says that if u is a concave function and Y is any
random variable, then E[u(Y )] ≤ u[E(Y )] (and in fact the inequality is strict
if u is strictly concave and Y is not constant). For a risk averse individual with
utility function u, the amount P is the solution to u(w− P ) = E(u(w−X)).
Because of Jensen’s inequality we have

u(w − P ) = E(u(w −X)) ≤ u(w − E(X)).

As u is an increasing function it follows that w − P ≤ w − E(X) and con-
sequently that P ≥ E(X). This is an important conclusion, for it says that
most individuals are willing to pay more in premiums than the expected value
of the loss they want to be insured for!

A sufficient condition for a function u to be strictly concave is u ′′(x) < 0.
An attractive risk averse (and strictly concave) utility function to work with
(partially because of its mathematical tractability) is the exponential utility
function of the form u(x) = a−b e−cx where a, b and c are constants (b, c > 0).

Example 8.15
An individual is considering insurance for a possible loss X which is expo-
nentially distributed with mean 25. He will make his decision on the basis of
expected utility where his utility function is given by u(x) = 1− e−0.01x. If w
is his current wealth, then the maximum premium P he is willing to pay to
be relieved of this loss is the solution to E(u(w−P )) = E(u(w−X)). Letting
MX(t) = 0.04/(0.04− t) be the moment generating function of X, then

E(u(w −X)) = 1− E(e−0.01(w−X))
= 1− e−0.01 wE(e0.01X) = 1− e−0.01 w MX(0.01).

Therefore it follows that

e0.01P = MX(0.01) = 0.04/(0.04− 0.01) or P = 100 log(4/3) = 28.77.

Note both that P > E(X) = 25, and P is independent of the initial wealth
w.

Example 8.16
Sarah is a decision maker with wealth of 50,000 who uses an exponential utility
function of the form u(x) = 1 − e−0.001x for x εR. She is liable for a loss X
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which is an exponentially distributed random variable with mean 400. What
is the maximum amount of money she is willing to pay to be relieved of 75%
of this loss?

Let us denote this value (premium) by P0.75. Finding this value on the
basis of expected utility, we want to solve

E[u(50,000− P0.75 − 0.25X)] = E[u(50,000−X)].

Hence

1− e−0.001(50,000)e0.001P0.75E[u(e0.00025X)] = 1− e−0.001(50,000)E[u(e0.001X)]
or e0.001P0.75MX(0.00025) = MX(0.001)

⇒ P0.75 = 1000
(

log
MX(0.001)
MX(0.00025)

)
= 405.47.

Generally speaking, when a risk averse individual is subject to a loss, she is
willing to pay more than the expected value of that loss to be insured for it.
In some cases, the individual cannot afford (or does not want) to pay to be
insured for the complete loss X, but is willing to spend an amount P to be
insured for part of it. Standard types of insurance that cover only part of a
loss X are proportional insurance and excess of loss (or stop-loss) insurance.

More generally, an insurance company might cover the amount I(X) of any
loss X incurred by the policyholder where 0 ≤ I(X) ≤ X. In proportional
insurance, there is a proportion α (where 0 ≤ α ≤ 1) such that I(X) =
(1 − α)X for any loss X. Here the insurance company pays (1 − α)% of
any claim X and the insured pays the rest. In excess of loss (or stop-loss)
insurance there exists a value d such that I(X) = 0 if X < d, and otherwise
I(X) = X − d which is the excess over d. In this case the loss payment for
the insured does not exceed (or is stopped at) d. The insurance company in
effect is treating d as a deductible!

One may naturally ask if there is an optimal type of insurance which one
may purchase for a given amount of money (or premium) P? A classic result
of Arrow [2] shows that under certain restrictions the best type of insurance
that a risk averse individual can purchase is an excess of loss (or stop-loss)
insurance policy.

THEOREM 8.1 Arrow’s theorem on optimal insurance
A risk averse individual with utility function u (where u ′′ < 0) is subject

to a random loss X, and is willing to spend an amount P to be relieved of
part of this loss. Various types of insurance I(X), all of which have the same
expected cost CP = E[I(X)] for the insurer, are available for purchase at a
price of P . Then the type of policy maximizing expected utility for the insured
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individual is the excess of loss (or stop-loss policy) Id∗(X) where

Id∗(X) =
{

0 if X < d∗

X − d∗ if X ≥ d∗

and d∗ is the solution to CP =
∫ +∞

d
(x− d) fX(x) dx.

Arrow’s theorem is important and intuitively appealing, but it has its lim-
itations for practical use. Firstly, it is not realistic to assume that there will
be many different types of insurance on offer to a person, all of which have
the same expected cost CP and fixed premium P . Secondly, in Arrow’s the-
orem the amount P to be spent on insurance is fixed, while in practice one
is more likely to ask how much should I spend (subject to a given maximum)
on insurance for a potential loss X? In the following, a sketch of a proof of
Arrow’s theorem is given.

PROOF Arrow’s theorem on optimal insurance
Since the risk averse utility function u is strictly concave and u ′′ < 0, the

first derivative u ′ of u is decreasing! Strictly concave functions may be viewed
as functions that are in some sense turning downwards (even though they
may be increasing). Furthermore, it is not difficult to show (and graphically
illustrate) that u has the property that for any y and z,

u(y)− u(z) ≤ (y − z) u′(z). (8.1)

We use Id∗(X) to indicate the stop-loss insurance and I(X) another on offer
where E[I(X)] = E[Id∗(X)] = CP . We want to show that

E[u(w −X + I(X)− P )]− E[u(w −X + I∗d(X)− P )] ≤ 0. (8.2)

Letting

y = w − x+ I(x)− P and z = w − x+ Id∗(x)− P,

it follows from Equation (8.1) that

u(w − x+ I(x)− P )− u(w − x+ Id∗(x)− P )
≤ [I(x)− I∗d (x)] u ′(w − x+ Id∗(x)− P ). (8.3)

We next show that

[I(x)− Id∗(x)]u ′(w−x+ Id∗(x)−P ) ≤ [I(x)− Id∗(x)] u ′(w−d∗−P ) (8.4)

by considering the various possibilities for (the sign) of [I(x)− Id∗(x)].

• If I(x)− Id∗(x) = 0, then clearly (8.4) is true since both sides are 0.
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• If I(x)− Id∗(x) < 0, then in particular, Id∗(x) > 0 and Id∗(x) = x− d∗.
Therefore −x+ Id∗(x) = −d∗, and again both sides of (8.4) are equal.

• Assume now that I(x)−Id∗(x) > 0. It is always true that Id∗(x) ≥ x−d∗,
which implies that −d∗ ≤ −x+ Id∗(x). Since u ′ is decreasing it follows
that u ′(w − x + Id∗(x) − P ) ≤ u ′(w − d∗ − P ). Therefore using that
I(x)− Id∗(x) > 0, the inequality (8.4) is valid.

Now using both (8.3) and (8.4), it follows that

u(w−x+ I(x)−P )−u(w−x+ Id∗(x)−P ) ≤ [I(x)− Id∗(x)] u ′(w−d∗−P ).

Taking expectations with respect to X and remembering that (since our as-
sumption is that all available insurance contracts have the same expected cost
for the insurer) E[I(X)−Id∗(X)] = 0, it follows that (8.2) holds, thus proving
Arrow’s theorem.

8.5 Problems

1. Which of the following decision making situations could be described as
games?

(a) A poor pensioner has received a surprise gift of $50 which he should
probably save for the forthcoming winter. However, he still dreams
of that elusive holiday in Spain which he never got earlier on, and
he is tempted to spend it on the national lottery game LOTTO.
What would you recommend?

(b) A young student walking home very late at night can take a short-
cut through a (poorly lit) city park which would save at least 15
minutes in her homeward journey. It is raining and no one else
seems to be around, so should she take the shorter route (with
the additional risk of traversing this dark walkway), or should she
decide to take the route she normally does?

(c) Local farmers in a community meet to determine annual output of
various crops and who should plant what.

(d) The minister of justice in a country is considering cutting back on
overtime hours for prison employees.

2. For the following payoff matrix P12 of Example 8.2 (continued) for Al-
ison and Brian, the value of the game is 7/3 and the optimal strategy
for Brian is to randomly select b1 with probability q1 = 1/3 and b2 with
probability q2 = 2/3. What is the optimal strategy for Alison?
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Brian
b1 b2

a2 1 3
Alison a3 5 1

P12

3. Deliveries of cigarettes are made at 10 AM to two warehouses (W1 and
W2) each Monday morning, and a local thief knows there is an oppor-
tunity for a robbery in either place for a few minutes after a delivery.
The cigarette company has employed one security agent, but clearly he
can only monitor one delivery at a time, and the two warehouses are
a good distance apart. The weekly delivery to W1 is worth 100,000,
while a smaller delivery worth 25,000 is made to W2. If the thief arrives
at a warehouse around 10 AM when the security agent is present, he
can escape with no loss, but has insufficient time to get to the other
warehouse. On the other hand, if he arrives at one warehouse and the
agent is covering the other he has the ability to rob the delivery. Which
warehouse is the thief more likely to target, and with what probability?
On the average, what is the value of the cigarettes stolen? What is the
optimal strategy for the security agent?

Thief
W1 W2

Security W1 0 25
agent W2 100 0

PThief

4. Edward is playing a game (against Francine) with the following loss
matrix. Both Edward and Francine are using the minimax criterion for
deciding on a pure strategy. Under what conditions on X and Y does
the matrix have a saddle point? If Y = 11 and X = 7 what is the
value of the game, and which are the optimal strategies for Edward and
Francine?

Edward
I II III

1 4 5 Y
Francine 2 X 9 8

3 6 2 10

5. Katherine and Daniel (intelligent beings) are playing a zero-sum game
with the following payoff matrix. Here a positive payoff represents a loss
to Katherine and a gain to Daniel. Assuming they both choose their
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strategies using the minimax criterion, show that the value of the game
is 5.

Player Katherine
I II III

i 0 2 1
Daniel ii 4 1 3

iii 5 7 5

6. The following payoff matrix represents a zero-sum game between two
intelligent players, Bertie and Mary. An entry in this payoff matrix
represents a loss to Bertie (or equivalently, a gain to Mary). Assum-
ing players choose their strategy with the objective of minimizing their
expected maximum loss, find Bertie’s optimum strategy. If Bertie will
receive 4 if he participates in the above game, and he uses the strategy
found above, should he play? What is Mary’s optimal strategy? Find
the value of the game.

Bertie
I II III

1 2 3 4
Mary 2 3 4 5

3 7 -1 8

7. Consider the following loss (payoff) matrix for Ann when playing against
Bob in a zero-sum game. For what values of X and Y does the payoff
matrix have a saddle point? If X = 7 and Y = 1, what is the value of
the game when minimax strategies are used?

Ann
I II III IV

1 4 5 7 Y
Bob 2 11 X 8 13

3 6 2 10 7

Consider the above game now where X = 9 and Y = 6, that is, the loss
matrix for Ann is given by

Ann
I II III IV

1 4 5 7 6
Bob 2 11 9 8 13

3 6 2 10 7

Determine the minimax randomized strategy for Ann and the value of
the game.
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8. Consider the following loss (payoff) matrix for player B when playing
against opponent A in a zero-sum game.

Player A
a1 a2 a3

b1 - 2 1 6
Player b2 0 4 1

B b3 3 5 0
b4 6 5 2

Find the optimal minimax decision strategies for A and B, and determine
the value of the game.

9. Richie is playing a game against Mort, and they are fierce competitors.
The following matrix is a gains matrix for Mort in a zero-sum game with
Richie, and both players are using the minimax criterion for deciding
on a strategy. Find the optimal (randomized) strategies for Richie and
Mort, and determine the value of the game. Do you think Richie would
play the game if offered 5 to do so?

Richie
I II III IV

1 1 3 6 2
Mort 2 -3 0 4 9

3 5 7 7 1

10. The following payoff matrix is for a zero-sum game between two intelli-
gent players, Andrew and Barbara. Here a positive payoff represents a
loss to Andrew and a gain to Barbara. Assuming both players choose
their strategies using the minimax criterion, find the strategy Barbara
will use and the value of the game.

Andrew
I II III

1 8 -5 9
Barbara 2 2 6 7

11. The payoff matrix for friends Albert and Bill (both avid sports fans) is
that below, with respect to selecting what to do in the case of conflicting
rugby and football matches. Albert is a little keener on sports in general
than Bill. What are the Nash equilibria for this game, and what is the
optimal strategy?
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Bill
Rugby Football

Rugby ( 25, 20) ( 10, 12)
Albert

Football ( 12, 10) ( 20, 15)

Payoffs for Albert and Bill: (Gain A, Gain B)

12. The management of a new sports club is considering how many members
should be allowed to join. It must consider variable costs over which it
has little or no control, yet which will influence the profit (euro) made
per member in the club on an annual basis. Assume that there are three
levels of these variable costs that may arise in the near future, which
may be classified as: θ1 (High), θ2 (Normal or most likely) or θ3 (Low).
One must decide on the following levels of membership for the club:
a1 = 1500, a2 = 1400 or a3 = 1200. Table 8.29 gives the profit per
member which is expected depending on the level of variable costs and
the number of members.

Assuming a prior distribution on the variable cost levels of the form
(P (θ1) = 0.15, P (θ2) = 0.55, P (θ3) = 0.30), what is the Bayes criterion
action for the number of members to allow? What is the minimax action
on the membership for the club?

TABLE 8.29

Sports club membership.
Variable costs
θ1 θ2 θ3

Membership a1 79 88 105
level a2 82 99 110

a3 87 101 114

13. The probability of success p in a binomial experiment is known to be
either 0 or 1/3. A statistician must decide on the value of p. To aid the
decision, she can observe the outcome (denoted by X) of 1 Bernoulli
trial with probability of success p. The statistician has four possible
decision functions d1, d2, d3 and d4, where d3 and d4 are defined by:

d3(0) = 0, d4(0) = 1/3, d3(1) = 0, d4(1) = 1/3.

The statistician will suffer a loss of 1 if she makes an incorrect decision,
and otherwise no loss is suffered. Define d1 and d2, the other possi-
ble decision functions. Table 8.30 gives the value of the risk function
R[di, p] (for d3 and d4) for each possible true parameter value p. Before
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TABLE 8.30

Binomial experiment.
Risk functions

Value of p d1 d2 d3 d4

0 0 1
1/3 1 0

observing X, the statistician felt that 0 and 1/3 were equally likely to
be the value of p. Complete the rest of this table. Given this informa-
tion, what decision function should the statistician use according to the
Bayes criterion?

14. Tod (a dog) is a 12-year-old labrador who likes his creature comforts.
Every night Tod has the choice of two chairs to sleep on: an old green one
in the office, or a brand new exclusive “parker knoll” (“PK”) armchair
in the living room. However, Tod gets punished if grandpa catches him
sleeping on either chair in the morning. Only if grandpa chooses the
wrong room to enter first, does Tod have the time to climb down from
the chair before grandpa sees him. Estimates (in units) of Tod’s pleasure
or utility (assume Tod’s pleasure = Grandpa’s displeasure) are given in
the following table:

Pleasure Utility
Sleeping on PK 12
Caught on PK -10
Sleeping on green 3
Caught on green -4

What strategy should Tod and grandpa use according to the minimax
criterion? Tod has utility 0 if he sleeps in his basket. Should he sleep
in his basket?

15. A statistician is to observe the results (number of successes) in two
Bernoulli trials. He knows that the success probability p is either 1/4
or 1/2, and he is trying to decide between these two values. Let X be
his observation. Although there are many possible decision rules, he
proposes to use one of the following four possibilities:

Decision functions
Sample X d1 d2 d3 d4

X = 0 p = 1/4 p = 1/4 p = 1/4 p = 1/2
X = 1 p = 1/2 p = 1/4 p = 1/4 p = 1/2
X = 2 p = 1/2 p = 1/2 p = 1/4 p = 1/2
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If he incorrectly concludes that p = 1/4, he suffers a loss of 1. If he
incorrectly concludes that p = 1/2, he suffers a loss of 2. Find the
risk function for each of these decision functions, and the decision func-
tion the statistician would use if he follows the minimax criterion. The
statistician has a “prior” feeling that p is equally likely to be 0.25 or
0.50. What decision function would he choose when using the Bayes
criterion?

16. A reinsurer decides to use a continuous uniform distribution on the
interval (0, θ) to model claim size X. She wishes to estimate θ on the
basis of a single observation of X and using a decision function of the
form d(X) = kX. If the loss incurred is proportional to the absolute
value of the error, find the value of k which minimizes the (expected)
risk.

17. A game between a statistician and nature is set up, where two inde-
pendent observations, X and Y from a uniform distribution on [0, 1]
are sampled. Consider X and Y in such a way that they split a unit
line segment into three pieces. The statistician must decide whether a
triangle can be formed from the pieces resulting. He suffers a loss of 2
if he incorrectly concludes a triangle will not be formed, and a loss of 1
if he incorrectly concludes a triangle will be formed. No loss is incurred
if the statistician makes the correct decision.

Assume the statistician is forbidden to observe X or Y before making
his decision. If he follows a Bayesian strategy, what will he decide?

18. The IT section of a large company is to invest in a new computer system
for the company’s employees, and the decision will ultimately be one
concerning the size of the system as follows: a1 → large system, a2 −→
medium system or a3 −→ small system. There is a question as to how
the employees will take to the new system, and Table 8.31 gives a fair
summary of the payoff (profit) to the company in thousands of euro over
the next year depending on the size of the system purchased.

TABLE 8.31

IT company payoff.
Action

Nature a1 a2 a3

High acceptance θ2 550 430 310
Low acceptance θ1 −80 30 160

(a) What is the minimax action (a1, a2 or a3) for the size of the com-
puter system to be purchased?
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(b) Prior information suggests that there is a 60% chance that the
employees will find the new system highly acceptable. If this is the
case, what is the Bayes decision strategy?

(c) A local marketing company can be used to make a prediction con-
cerning the acceptance of the system to employees. On the basis
of an employee survey, they will make a prediction X where X = 1
indicates that the employees will generally be highly favorable to
the system and X = 0 indicates that they will not. Table 8.32
(which is based on the marketing company’s past record) indicates
the probability of a correct prediction depending on the state of na-
ture θ, and Table 8.33 gives the possible decision functions. What
is the Bayes decision rule for the company?

TABLE 8.32

Marketing prediction probabilities.
Nature P (X = 1) P (X = 0)

High acceptance θ2 0.8 0.2
Low acceptance θ1 0.3 0.7

TABLE 8.33

Decision functions for IT company.
Possible decision functions

Survey result d1 d2 d3 d4 d5 d6 d7 d8 d9

X = 1 a1 a1 a1 a2 a2 a2 a3 a3 a3

X = 0 a1 a2 a3 a1 a2 a3 a1 a2 a3

19. A statistician is observing values from a B(3, p) distribution, and she
knows that p is equal either to 1/3, 1/2 or 2/3. One observation X ∼
B(3, p) is to be made, and the two decision functions given in Table 8.34
are under consideration. Assume that the loss function when estimating
p by p∗ is |p∗−p|. Determine the risk function for each of these decision
functions. Using both the minimax and Bayes criteria (assume each of
the three possible values for p are initally equally likely) for decision
making, find which of the two decision functions d1 and d2 is to be
preferred.

20. Gavin is subject to a random loss X which is exponential with mean
$400, and he has a utility function of the form uI(x) = 10 − e−0.002x.
The Ajax insurance company uses a utility function of the form uC(x) =
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TABLE 8.34

Decision functions for p.
d1 d2

X = 0 p=1/3 p =1/3
1 p=1/3 p =1/3
2 p=1/2 p =2/3
3 p=2/3 p =2/3

1 − e−0.001x, and it is willing to consider insuring Gavin for half of his
loss X. Suppose that the premium P which is ultimately paid by Gavin
is the mean of the maximum he would be willing to pay to be relieved
of half of this loss and the minimum the Ajax company would be willing
to accept to cover half of his loss. What is this premium P?

21. Elaine with initial wealth a0 and utility function u(x) = 1 − e−0.005x

is considering insurance for two independent random losses X1 and X2

which she will incur in the coming year. X1 is exponentially distributed
with parameter λ1 = 0.01 and X2 is a gamma random variable with
parameters n = 2 and λ2 = 0.02 (X2 ∼ Γ(2, 0.02)). An insurance
company is willing to insure Elaine for one or both of these losses. The
decisions are to be made on the basis of expected utility. Determine the
values G1, G2 and G1+2 which represent the maximum Elaine would be
willing to spend to be insured for lossesX1,X2 andX1+X2, respectively.
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Appendix A

Basic Probability Distributions

In the following list of basic probability distributions for a random variable
X, the density or mass function will be denoted by fX(x). The cumulative
distribution function is FX(x) = P (X ≤ x), and the survival function is
F̄X(x) = 1 − FX(x). The moment generating function will be denoted by
MX(t), and the mean and variance are given by E(X) and V ar(X), respec-
tively.

• Binomial: X ∼ B(n, p). X is the number of successes (with success
probability p = 1− q) in a sequence of n Bernoulli trials.

fX(x) =
(
n

x

)
pxqn−x, x = 0, 1, . . . , n.

MX(t) =
(
q + pet

)n
E(X) = np, V ar(X) = npq

• Poisson: X ∼ Poisson (λ). X is the number of events occurring where
the rate parameter for events is λ.

fX(x) =
λx

x!
e−λ , x = 0, 1, . . . , .

MX(t) = eλ(et−1)

E(X) = λ, V ar(X) = λ

• Negative binomial: X ∼ NB(k, p). X is the number of failures (with
failure probability q, or success probability p = 1 − q) until the kth

success in a sequence of Bernoulli trials.

fX(x) =
(
x+ k − 1
k − 1

)
pk qx , x = 0, 1, . . . , .

MX(t) =
(

p

1− q et

)k

E(X) = kq/p, V ar(X) = kq/p2
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• Normal: X ∼ N(µ, σ2).

fX(x) =
1

σ
√

2π
exp

{
−1

2

(
x− µ

σ

)2
}
, for −∞ < x <∞

MX(t) = exp

{
µ t+

1
2
σ2 t2

}
E(X) = µ, V ar(X) = σ2

• Gamma: X ∼ Γ(α, λ). When α is a positive integer, X may be viewed
as the time to the αth event in a homogeneous Poisson process with rate
parameter λ.

fX(x) =
λα

Γ(α)
xα−1 e−λx, for x > 0

MX(t) =
(

λ

λ− t

)α

for t < λ

E(X) = α/λ, V ar(X) = α/λ2

• Exponential: X ∼ Γ(1, λ). X may be viewed as the time to the first
event in a homogeneous Poisson process with rate parameter λ.

fX(x) = λ e−λ x, for x > 0

MX(t) =
λ

λ− t
for t < λ

E(X) = 1/λ, V ar(X) = 1/λ2

• Chi-square: X ∼ Γ(k/2, 1/2). X is said to have the chi-square distri-
bution with k degrees of freedom.

MX(t) =
(

1/2
1/2− t

)k/2

=
(

1
1− 2t

)k/2

for t < 1/2

E(X) = k, V ar(X) = 2k

• Pareto: X ∼ Pareto (α, λ).

fX(x) =
αλα

(λ+ x)α+1
and F̄X(x) =

(
λ

λ+ x

)α

for x > 0

E(X) = λ/(α− 1) , for α > 1
V ar(X) = αλ2/{(α− 1)2 (α− 2)} , for α > 2

• Generalized Pareto: X ∼ Generalized Pareto (α, λ, k).

fX(x) =
Γ(α+ k)λα xk−1

Γ(α)Γ(k) (λ+ x)k+α
, for x > 0

E(X) = λk/(α− 1), V ar(X) = λ2k(k + α− 1)/{(α− 1)2(α− 2)}
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• Weibull: X ∼W (c, γ).

fX(x) = cγxγ−1e−cxγ

and F̄X(x) = e−cxγ

, for x > 0

E(X) =
1
c1/γ

Γ
(

1 +
1
γ

)
V ar(X) =

1
c2/γ

Γ
(

1 +
2
γ

)
−
[

1
c1/γ

Γ
(

1 +
1
γ

)]2

• Lognormal: X is lognormal if the log of X is normal. That is,
Y = logX ∼ N(µ, σ2) for some µ and σ > 0.

fX(x) =
[

1√
2πσ

e−(log x−µ)2/2σ2
]

1
x
, for x > 0

E(X) = eµ+σ2/2,

V ar(X) = e2µ+σ2
[
eσ2

− 1
]

• Uniform [a,b]: X ∼ U [a, b]. X is uniform on the interval [a, b] if it is
equally likely to take any value in that interval.

fX(x) =
1

b− a
and FX(x) =

x− a

b− a
, for a < x < b

MX(t) =
ebt − eat

(b− a) t
E(X) = (a+ b)/2, V ar(X) = (b− a)2/12

• Beta(α, β) : X ∼ Beta(α, β).

fX(x) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1 , for 0 < x < 1

E(X) =
α

α+ β
, V ar(X) =

αβ

(α+ β)2(α+ β + 1)

• Burr(α, λ, γ) : X ∼ Burr(α, λ, γ).

fX(x) = αγλαxγ−1(λ+ xγ)−α−1, for x > 0

E(X) = λ
1
γ Γ
(
α− 1

γ

)
Γ
(

1 +
1
γ

)
/Γ(α)

V ar(X) = λ
2
γ Γ
(
α− 2

γ

)
Γ
(

1 +
2
γ

)
/Γ(α)

−
[
λ

1
γ Γ
(
α− 1

γ

)
Γ
(

1 +
1
γ

)
/Γ(α)

]2





Appendix B

Some Basic Tools in Probability and
Statistics

In this appendix, we review some basic tools in probability and statistics that
are of particular importance in this book. We begin with a brief review of
moment generating functions and follow this with a few examples of convo-
lutions of random variables. The concept of conditional probability is key to
many of the topics studied in this book, and a review is given with particular
emphasis being placed on the conditional random variables E(X | Y ) and
V (X | Y ). The double expectation theorem

E(X) = E(E(X | Y ))

is particularly useful in the study of loss distributions, as well as in risk, ruin
and credibility theory. A brief mention of the method of maximum likelihood
is given at the end.

B.1 Moment generating functions

If X is a random variable, then the moment generating function MX(t) of X
at the point t is (when it exists) given by

MX(t) = E(etX) =


∑

x e
txfX(x) if X is discrete∫

etxfX(x) dx if X is continuous,

where fX(t) is, respectively, the mass or density function of X. The moment
generating function for most random variables exists for all t in a neighborhood
of 0, and it can be a useful tool in both obtaining moments of and charac-
terizing (through its uniqueness property) a random variable. For example, if
the moment generating function MX(t) of X is continuously differentiable of
order n at 0, then the nth moment mn of X can be expressed as

mn ≡ E(Xn) =
dn

dtn
MX(t) |t=0= M

(n)
X (0).
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The uniqueness property of the moment generating function allows one to
conclude that if X1 and X2 are two random variables with respective moment
generating functions MX1(t) and MX2(t), then X1 and X2 have the same
probability distribution if and only if MX1(t) = MX2(t) for all t near 0.
Some other interesting properties of moment generating functions include the
following:

• MX(t) = E(etX) = E(
∑∞

n=0 t
nXn/n!) =

∑∞
n=0E(Xn) tn/n!.

• Let Y = aX + b. Then MY (t) = E(etY ) = E(et(aX+b)) = etbMX(at).

• If Y1 and Y2 are independent, then

MY1+Y2(t) = E(et(Y1+Y2)) = E(etY1etY2) = E(etY1)E(etY2)
= MY1(t)MY2(t).

If X is a continuous random variable with density function fX(x) and finite
mean E(X), then using integration by parts

E(X) =
∫ +∞

−∞
x fX(x) dx =

∫ ∞

0

(1− FX(x)) dx−
∫ 0

−∞
FX(x) dx.

Therefore when X is nonnegative (for example, representing a claim size or a
survival time), then

E(X) =
∫ ∞

0

F̄X(x) dx,

and the second moment E(X2) = m2 (when it exists) is

E(X2) =
∫ ∞

0

x2 fX(x) dx =
∫ ∞

0

2x F̄X(x) dx.

For example, suppose X is a gamma random variable (X ∼ Γ(n, λ)) with
parameters n and λ > 0, and density function

fX(x) =
λnxn−1

Γ(n)
e−λx for x > 0.

Then the moment generating function of X exists for all t < λ, and is given
by

MX(t) = E(etX) =
∫ ∞

0

etx λnxn−1

Γ(n)
e−λx dx =

(
λ

λ− t

)n

.

Hence if a random variable Y has moment generating function given by
MY (t) = (6/(6− 3t))4, then Y is a gamma random variable with mean
4/2 = 2 and variance 4/22 = 1.

There are other generating functions associated with a random variable X
which are also useful tools. The cumulant moment generating function CX(t)
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of the random variable X is defined by CX(t) = logMX(t), and is useful
in calculating central moments of a random variable X. The nth central µn

moment of X is given by µn = E(X−E(X))n, and note that for any random
variable, µ1 = 0 and µ2 = σ2. The nth cumulant κn of X is defined by

κn = C
(n)
X (t) |t=0

and hence one may write

CX(t) =
∞∑

n=0

κnt
n

n!
.

One can easily demonstrate that

κ1 = m1 = E(X), κ2 = σ2 = V ar(X) and κ3 = E(X −m1)3.

If µ4 = E(X − E(X))4 is the 4th central moment of X, then µ4 = κ4 + 3κ2
2.

The skewness γ1 of the random variable X is given by γ1 = κ3/σ
3, while the

kurtosis is given by γ2 = κ4/σ
4 = µ4/σ

4 − 3. While the mean m1 = E(X) is
a measure of location and the variance σ2 = E(X − E(X))2 is a measure of
spread for the random variable X, the skewness is a (standardized) measure
of departure from symmetry for X. In particular, a symmetric distribution
has 0 skewness, but on the other hand, a 0 skewness does not imply the
distribution is in fact symmetric. The kurtosis of a random variable X is
a (standardized) measure of peakedness, relative to the normal distribution.
For a normal distribution N(µ, σ2), the 4th central moment µ4 = 3σ4 = 3κ2

2

and hence the kurtosis is 0.
A positive value of γ2 usually indicates that the distribution is more peaked

and has fatter tails than the normal distribution. A negative value γ2 usu-
ally means that the distribution has a flatter peak and thinner tails than the
normal distribution. Historically (see [31]), distributions with 0 kurtosis are
called mesokurtic. Those distributions where γ2 > 0 are often called lep-
tokurtic, while those where γ2 < 0 are called platykurtic. Many of the classic
distributions with positive kurtosis have, relatively speaking, more mass in
one or both tails and are more peaked, while those with negative kurtosis
have small tail areas and are less peaked (flatter-topped – like a platypus?).

Example B.1
Let X be normal (X ∼ N(µ, σ2)) with mean µ and variance σ2. Then the
moment generating function of X is given by

MX(t) =
∫ ∞

−∞

1√
2πσ

etx e−
(x−µ)2

2σ2 dx = etµ+ t2σ2
2 .

Hence CX(t) = µt + σ2t2/2, from which it follows that κ1 = µ, κ2 = σ2 and
κn = 0 for all n ≥ 3.
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Example B.2
If X is a Poisson random variable with parameter λ, then

MX(t) =
∞∑

x=0

etxλxe−λ

x!
= eλ(et−1).

Therefore CX(t) = λ(et−1), and it follows that all of the cumulants are equal
to λ. Hence the skewness of X is γ1 = 1/

√
λ, and its kurtosis is γ2 = 1/λ.

When λ is large, X has skewness and kurtosis both approximately 0, but
this is not too surprising since in this case the Poisson distribution is well
approximated by a normal distribution.

Example B.3
If X is exponential with parameter λ (mean 1/λ), then

CX(t) = log
λ

λ− t
⇒ κ1 =

1
λ
, κ2 =

1
λ2
, κ3 =

2
λ3

and κ4 =
6
λ4
.

Note that an exponential distribution has skewness 2 and kurtosis 6 indepen-
dent of its parameter λ.

The characteristic function φX(t) of the random variable X is defined by

φX(t) = E(eitX)

for any t where i =
√
−1. A mathematical advantage of the characteristic

function φX(t) over the moment generating function MX(t) is that it is well
defined for any X and any t. The characteristic function possesses the unique-
ness property of the moment generating function, and because it always exists
is often used as a tool in proving limiting properties of random variables (like
central limit theorems).

B.2 Convolutions of random variables

Let X and Y be independent random variables, and S = X +Y be their sum
or convolution. If X and Y are nonnegative random variables with respective
density functions given by fX and fY , then the distribution function of S is
given by

FS(s) = P (X + Y ≤ s) =
∫ s

0

FX(s− y) dFY (y) =
∫ s

0

FX(s− y) fY (y) dy.
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Differentiating with respect to s, one obtains

fS(s) = F ′S(s) =
∫ s

0

fX(s− y) fY (y) dy.

Example B.4
Let X and Y be independent random variables both uniformly distributed on
the interval [0, 1], and let S = X + Y . The range of S is [0, 2]. If 0 ≤ s ≤ 1,
then

fS(s) =
∫ s

0

fX(s− y)fY (y) dy =
∫ s

0

1 · 1 dy = s,

while if 1 ≤ s ≤ 2 then

fS(s) =
∫ s

0

fX(s− y)fY (y) dy =
∫ 1

s−1

1 · 1 dy = 2− s.

Example B.5
Let X and Y be independent N(µ, σ2) random variables. Then

fX+Y (s) =
∫ +∞

−∞

1√
2πσ

e−
1
2 ( s−y−µ

σ )2 1√
2πσ

e−
1
2 ( y−µ

σ )2dy

=
1√

2πσ
√

2

∫ +∞

−∞

1√
2πσ/

√
2
e−

[2(y− s
2 )2+2(µ− s

2 )2]

2σ2 dy

=
1√

2πσ
√

2
e
− (s−2µ)2

2(σ22)

∫ +∞

−∞

1√
2πσ/

√
2
e
− (y−s/2)2

2(σ/
√

2)2 dy

=
1√

2πσ
√

2
e
− (s−2µ)2

2(σ22) ,

and therefore X + Y ∼ N(2µ, 2σ2). Note, however, that this may be proved
more directly using moment generating functions, since if X and Y are inde-
pendent

MX+Y (t) = MX(t)MY (t) = (eµt+σ2t2/2)2 = e2µt+(
√

2σ)2t2/2,

and hence using the uniqueness property of moment generating functions it
follows that X + Y must be normal with mean 2µ and variance 2σ2.

B.3 Conditional probability and distributions

Conditional distributions are of immense importance in applied probability,
and in particular in areas of risk analysis (like insurance) where we are in-
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terested in one variable (for example, a death, an accident or a default on a
loan), conditioned on another variable (such as being of a certain age, gender,
health status or educational background).

Let X and Y be jointly continuous (or discrete) random variables with joint
density (mass) function given by fX,Y (x, y). Then the conditional density
(mass) function of X given Y is given by

fX|Y (x | y) =
fX,Y (x, y)
fY (y)

if fY (y) > 0.

Of course, if X and Y are independent, then the conditional distribution of
X given Y is the same as the distribution of X – that is, knowing the value
of the random variable Y has no influence on the value that X might take.

We define the conditional expectation E(X | Y = y) of the random variable
X given that Y = y by

E(X |Y = y) =


∑

x x fX|Y (x | y) if X is discrete∫
x fX|Y (x | y) dx if X is continuous.

E(X | Y = y) is essentially the average value of the random variable X
given knowledge that Y = y. Of course, if the random variables X and Y
are independent, then knowing the value of the random variable Y tells us
nothing about X and thus E(X | Y = y) = E(X) for any value y of Y .

Example B.6
Let us suppose that for each randomly selected claimant in an insurance com-
pany, we record the age A, the gender G and the claim amount C. Then
E(C | A = 25) is the average claim size for an individual of age 25 years.
Similarly, we can define the expectation of one random variable conditioned
on several others – for example, E(C | A = 19 and G = F ) is the average
claim size for a female of age 19.

Example B.7
Employees in a large company have been offered group rates on both life and
health insurance by an insurance company. IfX is the proportion of employees
who will opt for the life scheme and Y is the proportion of people who go for
the health scheme, then experience suggests that an appropriate model for
the joint distribution of X and Y is given by

fX,Y (x, y) =
{

2
5 (x+ 4y) 0 < x < 1, 0 < y < 1
0 otherwise.

Since

fX(x) =
∫ 1

0

2
5
(x+ 4y)dy =

2
5
(x+ 2) for 0 < x < 1,
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it follows that the mean acceptance rate for life insurance is

E(X) =
∫ 1

0

x
2
5
(x+ 2) dx =

8
15
.

Similarly,

fY (y) =
2
5

(
1
2

+ 4y
)

and hence E(Y ) =
19
30
.

The probability of at least a 30% acceptance to the life scheme is given by

P [X > 0.3] =
∫ 1

0.3

2
5
(x+ 2) dx = 0.742.

We now determine the probability that, at most, 50% will opt for the health
insurance given there is a 20% acceptance rate for the life scheme. Now

fY |X=0.2(y | 0.2) =
(2/5)(x+ 4y)
(2/5)(x+ 2)

|x=0.2=
0.2 + 4y

2.2
.

Therefore

P (Y ≤ 0.50 | X = 0.2) =
∫ 0.5

0

0.2 + 4y
2.2

dy = 0.27 and hence

E(Y | X = 0.2) =
∫ 1

0

y
0.2 + 4y

2.2
dy = 0.65.

B.3.1 The double expectation theorem and E(X)

Given two random variables X and Y , the random variable E(X | Y ) is
defined on the sample space of events Ω by

E(X | Y ) : ω = E(X | Y = Y (ω)).

It is important to realize that E(X | Y ) is actually a random variable, and
not a real number (like, for example, E(X | Y = y)). Once the value of the
random variable Y is known (for example, Y = y), then the value of E(X | Y )
is determined. For instance in Example B.6, E(C | A) is the random variable
that associates with any person the average claim size for all individuals with
the same age as that person. Given that E(X | Y ) is a random variable,
we can determine its mean and variance. The following theorem is a classic
result in probability theory, and is often referred to as the double expectation
theorem.

THEOREM B.1
Given any random variables X and Y with finite means, we have that

E(X) = EY (E(X | Y )) ≡ E(E(X | Y )).
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PROOF (for the discrete case)

EY (E(X | Y )) =
∑

y

E(X | Y = y)P (Y = y)

=
∑

y

[∑
x

xP (X = x | Y = y)

]
P (Y = y)

=
∑

y

∑
x

x
P (X = x, Y = y)

P (Y = y)
P (Y = y)

=
∑

x

∑
y

xP (X = x, Y = y)

=
∑

x

xP (X = x)

= E(X).

The subscript Y in the above expression EY (E(X | Y )) indicates that
expectation is take with respect to Y . Remember that once Y is known,
E(X | Y ) is determined. In some cases, we will find it easier to find E(X) by
conditioning on some other random variable Y than by calculating it directly.

Example B.8
A study of smoking habits and general health was undertaken in a certain
community. The smoking habit S was rated 0 (nonsmoker), 1 (occasional
smoker), 2 (mild smoker) or 3 (heavy smoker). General health H was rated
0 (poor), 1 (average) or 2 (very healthy) for each individual. The results are
summarized in Table B.1, which gives the joint distribution of (S,H) for this
community.

TABLE B.1

General health (H) and smoking status (S).
Health (H)

0 1 2
Smoking 0 0.05 0.10 0.20 0.35
status 1 0.10 0.10 0.05 0.25

(S) 2 0.10 0.05 0.05 0.20
3 0.10 0.10 0.00 0.20

0.35 0.35 0.30 1.00

Suppose we select at random a person from this community. Let us consider
the random variable E(H | S), which is the expected health rating conditioned
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on smoking status. If the selected individual is a nonsmoker (S=0), then the
value of this random variable is given by

E(H | S = 0) = 0 · P (H = 0 | S = 0) + 1 · P (H = 1 | S = 0)
+2 · P (H = 2 | S = 0)

= 0 · (0.05/0.35) + 1 · (0.10/0.35) + 2 · (0.20/0.35)
= 50/35.

Hence if we know that a randomly selected person from this community is a
nonsmoker, then the expected health rating for this person is 50/35. Similarly,
one may calculate E(H | S = i) for i = 1, 2, 3 . In doing so, one observes that
the range of the random variable E(H | S) is (50/35, 20/25, 15/20, 10/20),
with probability distribution as given in Table B.2.

TABLE B.2

Probability distribution of E(H | S).
S = i Value of E(H | S) Probability

0 50/35 = 1.43 0.35
1 20/25 = 0.80 0.25
2 15/20 = 0.75 0.20
3 10/20 = 0.50 0.20

Using the double expectation theorem (conditioning on the random variable
S), we find

E(H) = (50/35)(0.35) + (20/25)(0.25) + (15/20)(0.20) + (10/20)(0.20)
= 0.95.

One way of interpreting this is that the average health rating E(H) is a
weighted average of the average health ratings of those who are nonsmokers,
occasional smokers, mild smokers and heavy smokers – with the weights being
the proportions of these groups in the community. Of course, in this example
we can calculate E(H) more directly since we know the marginal distribution
of H, and hence E(H) = 0(0.35) + 1(0.35) + 2(0.30) = 0.95.

From Table B.2, one may observe that the average health rating for a ran-
domly selected individual depends on their smoking habit, and that the aver-
age health rating decreases as the degree of smoking increases. This can also
be seen from calculating the correlation between S and H. Since

E(SH) = 1 (0.10) + 2 (0.10) + 3 (0.10) + 4 (0.05) = 0.80,

E(S) = 1.25, V ar(S) = 1.2875, E(H) = 0.95 and V ar(H) = 0.6475, it follows
that corr(S,H) = −0.4244.
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B.3.2 The random variable V (X | Y )

Another useful tool similar to the double expectation theorem allows us to
determine the variance of a random variable X by conditioning on any other
random variable Y . In some cases, it may be easier to calculate the variance
of X by conditioning than by doing it more directly. We define the random
variable V (X | Y ) by

V (X | Y ) : s = V ar(X | Y = Y (s)).

Again, once the value of the random variable Y is known (say Y = y), then the
value of the random variable V (X | Y ) is determined. For instance, using the
terminology in Example B.6, V (C | A) is the random variable which assigns
to any individual s the variance of the claim sizes for all individuals with the
same age as s. The following result establishes a useful link between V ar(X)
(the variance of X) and both the mean of the random variable V (X | Y ) and
the variance of the random variable E(X | Y ).

THEOREM B.2
For any random variables X and Y ,

V ar(X) = E(V (X | Y )) + V ar(E(X | Y )) (B.1)

PROOF Making use of the double expectation theorem, the following
argument gives a proof for the case when X and Y are discrete.

V ar(X) = E(X2)− EY [E2(X | Y )] + EY [E2(X | Y )]− E2(X)
= E[E(X2 | Y )]− E[E2(X | Y )]

+ E[E2(X | Y )]− E2[E(X | Y )]

=
∑

y

E(X2 | Y = y)fY (y)−
∑

y

E2(X | Y = y)fY (y)

+ V ar(E(X | Y ))

=
∑

y

{E(X2 | Y = y)− E2(X | Y = y)} fY (y) + V ar(E(X | Y ))

=
∑

y

V ar(X | Y = y) fY (y) + V ar(E(X | Y ))

= E(V (X | Y )) + V ar(E(X | Y )).

In Example B.6, V (H | S) assigns to any individual the variance of the
health ratings of all other individuals with the same smoking status. For
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example, suppose that we condition on a nonsmoker (S = 0). Then

V ar(H | S = 0) = E(H2 | S = 0)− E2(H | S = 0)

=
[
02 · 0.05

0.35
+ 12 · 0.10

0.35
+ 22 · 0.20

0.35

]
−
(

50
35

)2

=
650
352

= 0.5306.

Table B.3 gives the probability distribution of the random variable V (H | S)
based on the joint distribution of H and S (Table B.1). Therefore it follows

TABLE B.3

Probability distribution of V (H | S).
S = i Value of V (H | S) Probability

0 650/1225 = 0.5306 0.35
1 350/625 = 0.5600 0.25
2 275/400 = 0.6875 0.20
3 100/400 = 0.2500 0.20

that

E(V (H | S)) =
650
1225

(0.35) +
350
625

(0.25) +
275
400

(0.20) +
100
400

(0.20) = 0.5132

and

V ar(E(H | S)) = E[E2(H | S)]− E2[E(H | S)]

=
(

50
35

)2

(0.35) +
(

20
25

)2

(0.25)

+
(

15
20

)2

(0.2) +
(

10
20

)2

(0.2)− (0.95)2

= 0.1343.

Thus

V ar(H) = E(V (H | S)) + V ar(E(H | S)) = 0.5132 + 0.1343 = 0.6475.

Example B.9
Let {Xi}∞i=1 be a sequence of independent and identically distributed random
variables, and assume that N is a nonnegative integer valued random variable
which is also independent of this sequence. The random variable defined by

S = X1 + · · ·+XN
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is said to have a compound distribution (note that the number of terms in
the sum is itself a random variable). By conditioning on N , one is able to use
the double expectation theorem to establish compact formulae for the mean,
variance and moment generating function of a compound random variable as
follows:

E(S) = E(X)E(N)
V ar(S) = E2(X)V ar(N) + V ar(X)E(N), and
MS(t) = MN (logMX(t)).

B.4 Maximum likelihood estimation

If Fθ : θ ε Θ is a one-parameter family of distributions, then the maximum
likelihood estimator θ̂ of θ based on a sample x of size n has very desirable
asymptotic properties. In particular, one has the asymptotic property that

θ̂ ∼̇ N(θ, 1/nI(θ)),

where ∼̇ means approximately distributed as, and I(θ) is the Fisher informa-
tion given by

I(θ) = E

[
∂

∂θ
log f(X | θ)

]2
= −E

[
∂2

∂θ2
log f(X | θ)

]
.

In particular, note that the asymptotic variance of θ̂ is the Cramér–Rao lower
bound for unbiased estimators of θ.

Suppose now that we have a random sample of observations from a two-
parameter family of distributions, where the parameters are denoted by (θ1, θ2).
The maximum likelihood estimates (θ̂1, θ̂2) are those values of (θ1, θ2) which
maximize the likelihood function Lx for x = (x1, x2, . . . , xn). That is, using
f to denote the density function for the random variable of interest X,

maxLx (θ1, θ2) = max(θ1,θ2)

[
n∏

i=1

f(xi | θ1, θ2)

]
=

n∏
i=1

f(xi | θ̂1, θ̂2)

= L(θ̂1, θ̂2).

These estimates may, in some cases, be found by differentiating the log-
likelihood function l(θ1, θ2) = logL(θ1, θ2) with respect to θ1 and θ2 and,
setting the resulting equations, equal to 0. Again, one of the main reasons for
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using the maximum likelihood estimators is their asymptotic properties. The
2× 2 information matrix I(θ1, θ2) is given by

I(θ1, θ2) =

 −E
[

∂2

∂θ2
1

log f(X | θ1, θ2)
]

−E
[

∂2

∂θ1∂θ2
log f(X | θ1, θ2)

]
−E

[
∂2

∂θ1∂θ2
log f(X | θ1, θ2)

]
−E

[
∂2

∂θ2
2

log f(X | θ1, θ2)
]  ,

and hence if the sample size n is large,(
θ̂1
θ̂2

)
∼̇ N

([
θ1
θ2

]
, [n · I(θ1, θ2)]−1

)
.

Example B.10
Let X ∼ N(µ, σ2). This is a two-parameter family of distributions with
parameters µ and σ, and the information matrix I(µ, σ) takes the form

I(µ, σ) =
(

1/σ2 0
0 1/2σ4

)
.

In particular, it follows that the maximum likelihood estimators µ̂ = x̄ and
σ̂ =

√∑
(xi − x̄)2/n = s

√
(n− 1)/n are asymptotically independent and

unbiased. Of course, a classic result of Gosset and Fisher states that x̄ and
s2 (equivalently, x̄ and s) are independent when sampling from a normal
distribution, and hence we know that in this situation µ̂ and σ̂ are independent
for any n.





Appendix C

An Introduction to Bayesian Statistics

If θ is an unknown characteristic or parameter related to a population or ran-
dom variable, then the frequentist statistician will attempt to make inferences
about θ on the basis of the sample information x. The Bayesian statistician,
however, would always believe that there is additional prior information avail-
able about θ that should be combined with the sample information x in order
to make inferences about θ.

C.1 Bayesian statistics

The Bayesian (statistician) would express prior knowledge about an unknown
parameter θ by means of a prior probability distribution with density or mass
function fΘ(Θ) and corresponding distribution function FΘ(θ). Any sample
information x is observed conditional on the unknown true parameter θ, and
we use fX|θ to represent this conditional density (or mass function). The prior
and sampling distributions give rise to a joint distribution for θ and X given
by

fΘ,X(θ,x) = fX|Θ(x | θ)fΘ(θ).
The marginal distribution for the sample X is essentially an average of the
conditional distributions X | θ with respect to our prior belief about θ, and is
given by

fX(x) =
∫
fX|Θ(x | θ)fΘ(θ) dθ =

∫
fΘ,X(θ,x) dθ.

However, in practice it is our feeling or belief about θ after observing x which
is used for inference about θ. This is called the posterior distribution for θ
given X = x, given by

fΘ|X(θ | x) =
fΘ, X(θ,x)
fX(x)

=
fX|Θ(x | θ)fΘ(θ)

fX(x)
.

Calculation of the posterior distribution can often be tedious and difficult;
however, in some situations simulation methods may be useful in generating
samples from such a distribution. It is also important to note that

fΘ|X(θ | x) ∝ fΘ, X(θ,x) = fX|Θ(x | θ)fΘ(θ), (C.1)
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where ∝ indicates “is proportional to” as a function of θ. Hence 1/fX(x)
is simply a factor ensuring that as a function of θ, fΘ|X(θ | x) integrates
to 1. Therefore in many cases one need not actually calculate the marginal
distribution fX(x) in order to get the general form of the posterior.

C.1.1 Conjugate families

In some cases, the posterior distribution for θ will have the same functional
form as the prior distribution for a given sampling distribution. When this
occurs, we say the prior and posterior families of distributions are conjugate
with respect to the sampling distribution. The following example shows that
the family of beta distributions is conjugate for samples from a binomial
distribution. In Chapter 5 on credibility theory, it is shown that the normal
family of distributions is conjugate for samples from a normal distribution,
and the gamma family of distributions is conjugate for samples from a Poisson
distribution. Mathematically, it is attractive to work with conjugate families
of distributions, but is important to note that conjugacy is an exception,
and one often has to resort to simulation to find the posterior distribution
in practice. Markov Chain Monte Carlo (MCMC) methods are a commonly
used tool for this purpose.

Example C.1 Binomial | Beta model
Assume that q is the probability of an event of interest, for example, the
probability of a person dying in a given year (mortality rate) or of a defective
being found when an item is randomly selected from a production line (quality
control). The beta family of distributions is a rich family, and often one may
select one such distribution Beta(α, β) to represent prior feeling about the
unknown value of q. Such a distribution has mean µ, variance σ2 and density
function f(q) given, respectively, by

µ =
α

α+ β
, σ2 =

αβ

(α+ β)2(α+ β + 1)
and f(q) =

Γ(α+ β)
Γ(α)Γ(β)

qα−1(1− q)β−1

(C.2)
for 0 < q < 1, and some positive parameters α and β.

Assume now that we may also observe some sample information x related
to q, in particular, that we have a binomial observation that is the number of
successes

∑
xj in a sequence of n independent trials with success probability

q. This may represent the number of deaths from a sample of n individuals,
or the number of defects observed in a random sample of n items from a
production line.

From Equation (C.1) it follows that the posterior for q is of the form

f(q | x) ∝
(

n∑
xj

)
q

P
xj (1− q)n−

P
xj

Γ(α+ β)
Γ(α)Γ(β)

qα−1(1− q)β−1
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∝ qα+
P

xj−1(1− q)β+n−
P

xj−1.

Therefore when the prior for q is Beta(α, β) and the sampling distribution
is B(n, q), then the posterior for q is the Beta(α +

∑
xj , β + n −

∑
xj) dis-

tribution. This situation is therefore referred to as the binomial | beta model.
Note in particular that the mean of the posterior distribution for q can be
written in the form

α+
∑
xj

α+ β + n
=

n

α+ β + n

∑
xj

n
+

α+ β

α+ β + n

α

α+ β

= Z x̄+ (1− Z) µ0,

where µ0 = α/(α + β) is the prior mean. Hence the posterior mean can be
written as a credibility estimate for q with credibility factor Z = n/(α+β+n).

Let us consider the example of a life insurance portfolio consisting of 400
policies, each independent with respect to mortality. Assume that the prob-
ability of death q will be the same for all policyholders next year, and that
prior information about q may be expressed by a beta distribution with mean
0.04 and variance 0.000191. Using the expressions for the mean and variance
of a beta distribution given in Equation (C.2), we have that

α/(α+ β) = 0.04 ⇒ α = 4β/96, and

0.000191 = αβ/[(α+ β)2 (α+ β + 1)] = 4(96)/[1002(100β/96 + 1)],

yielding β = 192.045 and α = 8.0018. If 36 policyholders die within the
coming year, then the posterior mean for q may be written in the form

α+ 36
α+ β + 400

=
400

400 + α+ β

36
400

+
α+ β

400 + α+ β

α

α+ β

= 0.6666 (0.09) + 0.3334 (0.04) = 0.0733,

where the weight put on the sample mean of 0.09 is Z = 0.6666.

C.1.2 Loss functions and Bayesian inference

Beginning with prior knowledge of θ given by fΘ(θ), the posterior distribution
summarizes our current belief about θ, having observed the sample x. How
might we use the posterior distribution to make inferences about θ? In many
cases, we might consider giving some type of point estimate θ̇ of θ based on the
posterior distribution. Given a prior distribution for θ, the posterior distribu-
tion for θ is determined by the sample information x, hence any reasonable
estimate of θ will be a function of x which we write in the form θ̇ = g(x).
We may view this as a decision problem in which there is a loss or penalty
l(θ, θ̇) = l(θ, g(x)) to pay as a result of estimating θ by g(x). There are many
possible loss functions, but the following are the most common:
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1. quadratic or squared error loss where l1(θ, g(x)) = [θ − g(x)]2

2. absolute value loss where l2(θ, g(x)) = |θ − g(x)|

3. zero-one (or all or nothing) loss where

l3(θ, g(x)) =
{

1 if θ 6= g(x)
0 if θ = g(x).

Given a particular loss function l, we define the Bayesian estimator of θ to
be that value θ̇ = g(x) which minimizes the expected loss with respect to our
posterior belief about θ.

For any random variable Y , it is well known that the value of g which
minimizes LY,1(g) ≡ E(l1(Y, g)) = E(Y − g)2 is g = E(Y ).

Letting LY,2(g) = E(| Y −g |), then (when Y has continuous density fY (y))
one has

LY,2(g) = E(| Y − g |) =
∫ +∞

−∞
| y − g | fY (y) dy

=
∫ g

−∞
(g − y)fY (y) dy +

∫ +∞

g

(y − g)fY (y) dy

= gFY (g)−
∫ g

−∞
yfY (y) dy − g[1− FY (g)] +

∫ +∞

g

yfY (y) dy

= 2gFY (g)− g + E(Y )− 2
∫ g

−∞
yfY (y) dy.

Therefore setting L′Y,2(g) = 2FY (g) − 1 = 0, one notes that the value of g
minimizing E(| Y − g |) is the median g = F−1

Y (1/2).
Another approach is to find the mean of | Y −g | by integrating its survival

function F̄|Y−g| and minimizing E(| Y − g |) =
∫∞
0
F̄|Y−g|(t) dt. Now

F̄|Y−g|(t) =
{
F̄Y (g + t) if g ≤ t
F̄Y (g + t) + FY (g − t) if g > t.

Therefore

E(| Y − g |) =
∫ ∞

0

F̄|Y−g|(t) dt

=
∫ ∞

0

F̄Y (g + t) dt +
∫ g

0

FY (g − t) dt

=
∫ ∞

g

F̄Y (y) dy +
∫ g

0

FY (w) dw.

Letting G(g) = E(| Y − g |), then G(0) = E(Y ) and G(∞) = ∞. Moreover,
G′(g) = −F̄Y (g)+FY (g) = 2FY (g)−1, which is 0 if g = F−1

Y (1/2). Note that
G′′(g) = 2 fY (g) ≥ 0, showing that the median is a minimum for E(| Y − g |).
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Finally, consider the zero-one loss function and LY,3(g) ≡ E(l3(Y, g)). If Y
is discrete with mass function fY (y), then E(l3(Y, g)) = 1 − fY (g) is clearly
minimized where fY (g) is maximized (at the modal value for Y ). In the
continuous case E(l3(Y, g)) = 1 for all g, and hence there is no optimization
problem here strictly speaking. However, we may motivate the use of the
zero-one loss function in this situation by considering it as the limit as ε→ 0
of loss functions lε3(θ, g(x)) defined by

lε3(θ, g(x)) =
{

1 if | θ − g(x) |> ε
0 if otherwise,

where ε > 0. Now

E(lε3(Y, g)) = 1−
∫ g+ε

g−ε

fY (y) dy .= 1−
∫ g+ε

g−ε

fY (g) dy = 1− 2εfY (g).

For any ε this is minimized where fY (g) is maximized, that is, at the modal
value for Y , and

E(l3(Y, g)) = lim
ε→0

E(lε3(Y, g)).

Returning to the Bayesian context and our interest in estimating the pa-
rameter θ after observing the sample information X = x, the random vari-
able (or posterior distribution) of interest is that of Y = [Θ | X = x]. It
has been demonstrated that the Bayesian estimator for θ having observed
X = x is therefore, respectively, the mean, median or mode of the posterior
distribution [Θ | X = x] when using the quadratic, absolute value or zero-one
loss function.

Example C.2
The number of monthly claims in a small portfolio of household theft policies is
to be modeled by a Poisson distribution with parameter λ, where λ is initially
assumed to be one of the values (3, 4, 5) with prior distribution fΛ(3, 4, 5) =
(0.3, 0.4, 0.3). If at the end of two months a total of 11 claims have been
observed (6 in month 1 and 5 in month 2), what would you estimate λ to be?

Given the sample information x = (6, 5), the posterior distribution takes
the form

fΛ|X(λ | x) ∝
2∏

i=1

[λxie−λ] fΛ(λ)

∝ λ11e−2λ fΛ(λ)
∝ (131.731, 562.813, 665.038)
∝ (0.097, 0.414, 0.489),

giving Table C.1 of the prior and posterior distributions for λ. Therefore
the estimate might be the posterior mean (4.392), median (4) or mode (5),
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TABLE C.1

Distributions for λ in household thefts.
parameter λ 3 4 5
prior fΛ(λ) 0.3 0.4 0.3
posterior fΛ|X(λ | x = (6, 5)) 0.097 0.414 0.489

depending on the loss function that one is using (respectively, quadratic, ab-
solute value or zero-one).

We refer to any interval [cl, cu] containing (1−α) of the posterior probability
of θ as a 100(1− α)% Bayesian belief interval for θ. It expresses a subjective
belief about where we think the value of θ lies, and its interpretation is not to
be confused with the meaning of a frequentist 100(1−α)% confidence interval
for θ. Such frequentist confidence intervals are constructed on the basis of
sample information alone, and the degree of confidence in such an interval
refers to how often the procedure used generates an interval containing the
unknown θ.

Example C.3 Burr |Gamma model
The claim size arising from a certain group policy is modeled by a Burr dis-
tribution with density function given by f(x|θ) = 2θx/[1 + x2]1+θ for x > 0,
where θ is an unknown parameter. Prior information on θ suggests that a
gamma Γ(21, 15) distribution is appropriate. A sample of size n = 100 will
be taken in order to make inferences about θ. We will determine the form of
the Bayesian estimators for θ using the three loss functions l1, l2 and l3, as
well as a 95% Bayesian belief interval for θ.

From Equation (C.1) we see that the posterior density for θ given x will be
of the form

fΘ|X(θ | x) ∝ 1521 θ20 e−15θ

Γ(21)
(2θ)100

∏
xj∏

[1 + x2
j ]1+θ

∝ θ120 e−θ(15+
P

log[1+x2
j ]),

and hence the posterior distribution is Γ(121, 15 +
∑

log[1 + x2
j ]).

For the gamma distribution Γ(α, λ), the mean is α/λ and the mode is
(α − 1)/λ (unless α ≤ 1, in which case the gamma density is decreasing).
Therefore the usual Bayesian estimator (for a quadratic loss function) in this
case is the posterior mean, which can be written in the form

100 + 21
15 +

∑
log[1 + x2

j ]
= Z

100∑
log[1 + x2

j ]
+ (1− Z)

21
15
,

where the weight (credibility factor) put on the sample statistic (in this case,
the maximum likelihood estimator of θ) θ̂ = 100/

∑
log[1 + x2

j ] is given by
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Z =
∑

log[1 + x2
j ]/(15 +

∑
log[1 + x2

j ]). When using a zero-one loss func-
tion, the Bayesian estimator would be 120/(15 +

∑
log[1 + x2

j ]). For the
absolute value loss function, one would usually refer to a statistical package
to determine the median or 50th percentile of the Γ(121, 15 +

∑
log[1 + x2

j ])
distribution. The gamma distribution Γ(121, 15 +

∑
log[1 + x2

j ]) can usually
be well approximated by the normal distribution with the same mean and
variance, and hence an approximate 95% Bayesian belief interval for θ when
using quadratic loss is given by[

121
15 +

∑
log[1 + x2

j ]
± 1.96

√
121

15 +
∑

log[1 + x2
j ]

]
.
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Answers to Selected Problems

D.1 Claims reserving and pricing with run-off triangles

1. An additional amount of 142,441 should be reserved for paying ultimate
claims arising from the origin year 2006.

3. Necessary reserves would be about 2,835.53 ($000′s).

5. Approximately $1,420,000.

7. Reserves of approximately 7,350 are needed.

9. Reserves of approximately 4076.83 would be needed.

11. Reserves of 1562.27 should be set aside using the average cost per claim
method, while the estimate would be 1571.00 if we ignored the informa-
tion on claim numbers.

13. Reserves of 984,340 should be set aside at the end of 2006.

D.2 Loss distributions

1. (a) W ∼ Pareto(α, 60,000), (b) α̂ = 4.6931 and sd(α̂) .= 2.09887. (c)
Letting W ∗ denote the excess over 40,000 in 2006, E(W ∗) = 16,462.64.

3. α̂ = 7/(0.807430 + 0.640722) = 4.833747.

5. Next year, the expected average amount paid will be E(Y ) = 394.31.

7. If Y represents the random amount paid this year and Y ∗ next year,
then (a) E(Y ) = 300 − 64.8 = 235.2 (with a mean reduction of 64.8)
and (b) E(Y ∗) = 250.34.

9. Using x̄ = 272.675 and s = 461.1389, one obtains α̃ = 3.075243 and λ̃ =
565.8669. This gives observed and expected values for the five intervals
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of (9, 9, 10, 4, 8) and (8, 8, 8, 6, 10), respectively. The resulting χ2 test
statistic is 1.8167, and since χ2

0.95 = 5.991, we have no reason to reject
the fit of this Pareto distribution.

11. (a) For the exponential fit, E8 = 6, E9 = 18 and E10 = 12. The chi-
square test statistic for the exponential fit is χ2 = 41.64 with a p-value
less than 0.001, and hence the exponential fit is unacceptable.
(b) For the the Weibull fitted distribution, E8 = 6.21, E9 = 5.44 and
E10 = 0.02. One should probably combine the last two intervals whereby
the resulting expected number of observations would be 5.468414. The
resulting chi-square test statistic would be χ2 = 5.665817 with a p-value
of 1 − pchisq(5.665817, df = 7) = 0.580, suggesting a much better fit!
If one further combines the intervals 1 and 2 to form one interval, then
the resulting χ2 test statistic on 5 degrees of freedom is 5.03836 with a
p-value of 0.539.

13. Using R, one obtains 173 and 369.5 as the first and third quartiles,
respectively. With the method of percentiles, one finds that γ̈ = 2.072234
and c̈ = 6.624574e− 06. This gives rise to expected values of

(5.43, 6.30, 6.82, 6.53, 4.92)

in the respective intervals, and a chi-square test statistic of χ2 = 3.455929
with a p−value of 0.178.

15. Let X ∼ N(µN , σ
2
N ) be the normal random variable modeling claim

size, and Y be the lognormal model where log Y ∼ N(µLN , σ
2
LN ). Using

the method of moments, one finds µ̃N = 800, σ̃2
N = 3502 and µ̃LN =

6.597045, σ̃2
LN = 0.1751343. The 95th percentiles of X and Y are,

respectively, wN = 1375.699 and wLN = 1458.845. If the distribution of
X fits the data well, we would expect about 81 observations less than
125, while if that of Y does then we would expect none.

17. (a) One maximizes
∏n

1 [e−(yi−µ)2/2σ2
]/σ as a function of µ and σ2.

(b) The average size of a claim is = 340.36 and P (X > 400) .= 0.27.
(c) logW = log k + logX.

19. E(Y ) = 629.3333, while next year it would be E(Y ∗) = 645.2003.

21. Using the method of moments, µ̃ = 5.921898 and σ̃2 = 0.329753. Hence
(a) P (X < 200) = 0.138757 and (b) P (X > 1100) = 0.029865. (c) If
Z is the amount of a claim X paid by the reinsurer, then E(Z) = 9.10
and the average amount for those involving the reinsurer is 304.71.

23. E(X) = 0.2 and V ar(X) = 0.22.

峥 周
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D.3 Risk theory

1. V ar(S) = 6λ/β2 and skew(S) = 4/
√

6λ.

3. E(S) = 100, V ar(S) = 49,950, skew(S) = 2.2327 and P (S > 600) =
0.0174575.

5. E(S) = 22/3, and V ar(S) = 16.55556. P (S = 9) = 0.0949.

7.

P (N = n) =
(
q +

(k − 1) q
n

)
P (N = n− 1).

9. Letting S∗ denote aggregate claims if business increases by a factor of
k and θ∗ be the necessary security factor, then

θ∗ = z1−α[
√
V ar(S∗)/E(S∗)] = z1−α[

√
V ar(kS)/E(kS)] = θ/

√
k.

11. Using E(S) = 4, V ar(S) = 32 and skew(S) = 6/
√

8, one finds α =
8/9, δ = 1/6 and τ = −4/3. P (S > 6) = 0.2522069 and P (S > 8) =
0.1825848. Letting Snorm ∼ N(4, 32), then P (Snorm > 6) = 0.3618368
and P (Snorm > 8) = 0.2397501. With STG = −4/3 + Γ(8/9, 1/6),
P (STG > 6) = 0.2525313 and P (STG > 8) = 0.1777525.

13. The necessary reserves would be UA = 7248.58, UB = 9907.89 and
UAB = 9483.11. Note that UAB < UB .

15. E(X) = 300, E(X2) = 306,000 and necessary reserves are U = 15,724.06.
If θ = 0.3, then reserves of U = −6775.94 would do. With Y , one finds
that P (Y > 400) = 0.2230367, and that the same amount of reserves
would do.

17. α = 0.9029363, and the probability that the net premiums of the rein-
surer will meet its claims is 0.9331928.

19. P (SM
I + PM

R > 2,500,000) = 0.05083777 at M = 100,000.

21. M∗ = 269.6938. M = 300 ⇒ EAP = 1440, M = 800 ⇒ EAP = 16,560
and EAP = 28,406.25 ⇒M = 2000.

25. (a) E(S) = 91,000, V ar(S) = 176,500,000 and skew(S) = 0.15299416.
(b) U0 = 17,256.3, and (c) P (S1 > 50,000) = 0.02530859.
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D.4 Ruin theory

1. The probability that the first process is nonnegative for the first two
years is 0.567147, while it is 0.507855 for the second.

3. R = 0.014645 and the Lundberg upper bound is 0.556668 for the first
process, while R = 0.029289 with a corresponding Lundberg upper
bound of 0.002857 for the second.

5. R = 0.116204, and ψ(25) ≤ 0.054743.

7. Using a, b and c for the three processes, respectively, Ra = 0.050364 and
ψa(150) ≤ 0.000524. For b, Rb = 1/60 and ψb(150) = 0.068404. For c,
Rc = 0.012250 and ψc(150) ≤ 0.159210.

9. R0 = 0.0000697 and R = 5.776542e − 05 with an upper bound on the
ruin probability of 0.003099 when reserves are 100,000.

11.

2ψ(U) =
e−αU

2 + θ

[
1 +

αU

(2 + θ)
+

1 + θ

(2 + θ)2

]
.

13. (a) α ≥ 0.25, R = 0.004076 and ψ(450) ≤ 0.159735.

15. R(α) ≥ R(1) = 1/300 ⇔ α ≥ 6/13.

17. (a) α ≥ 0.2 and R = 0.009231 with ψ(300) ≤ 0.062710.

19. (a) R ≤ 2θ(a + 2b)/(2a + 6b) and (b) R = 0.152147 with ψ(50) ≤
0.000497.

D.5 Credibility theory

1. To estimate E(S) = λE(X) with the desired precision, r = 9 years of
data would suffice, while only 3 would be needed to estimate λ alone.

3. The numbers of lives needed are, respectively, 75,293, 76,193 and 76,193.

5. The partial credibility Z given to 1,200 claims would be 0.5772.

7. The posterior has mean 3.6529, median 4 and mode 3.
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9. The Bayes estimate is the posterior mean 242/(20+
∑

log(1+x2
i )), with

a 90% Bayesian belief interval for θ (using a normal approximation to
the posterior) of the form

242
20 +

∑
log(1 + x2

i )
± 1.645

√
242

20 +
∑

log(1 + x2
i )
.

11. (a) α = 2 and r = 100. (b) The posterior for λ is Γ(548, 10). A 95%
Bayesian interval for λ would be of the form (50.212, 59.388).

13. (a) The prior mean for θ is 625. (b) The posterior for θ is given by the
density f(θ | x) = 15(800)15/θ16 for θ ≥ 800, and has mean 857.1429.

15. The posterior mean and variance for α are, respectively,
(α1 + n)/(β1 −

∑
log yi) and (α1 + n)/(β1 −

∑
log yi)2.

17. The pure premium would be

E(S5 | s) = (0.2725) s̄ + (0.7275) E[m(Θ)]
= (0.2725) 1125 + (0.7275) 665 = 790.34,

where the credibility factor is Z = 4/(4+K) = 0.2725 and K = 10.6797.
Z is small and K is quite large due to the fact that the expected value of
the process variance is much higher than the variance of the hypothetical
means.

19. The posterior mean

E(λ | N = k) = Z
k

n
+ (1− Z)

α

β
,

where Z = n/(n+ β) is an increasing function of the sample size n and
a decreasing function of β. It does not depend on α. We would estimate
the number of claims next year to be 73.33.

21. (a) A reasonable prior for µ is µ ∼ N(µ0 = 150,000, σ2
0 = 10, 204.082).

(b) The posterior is N(142,166.67, 4749.772), and a 95% Bayesian belief
interval for µ is (132,857.1 , 151,476.20). (c) The classical (frequentist)
95% confidence interval would be (129,481.53, 150,518.46).

23. The credibility premiums for regions A, B, C and D are, respectively,
(in millions of $) 183.115, 249.137, 90.310 and 206.939.

25. For Model 1, the credibility (pure) premiums for the three risks are,
respectively, 4,476.36, 3,952.50 and 4,746.14. Using Model 2, the cred-
ibility premiums (per unit risk) for risks 2 and 3 are, respectively, 7.56
and 6.28.
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D.6 No claim discounting in motor insurance

1. He would have paid $400 in 2002 with the soft rule and $640 with the
severe rule.

3.

P8 =

0.1863592 0.2440922 0.5695486
0.1859750 0.2444764 0.5695486
0.1859750 0.2440922 0.5699327

 .

5. π = (0.2028, 0.1711, 0.1402, 0.1458, 0.1020, 0.2381).

8. (a) E0 → 400, E1 → 560, E2 → 160. (b) The respective rates for making
claims are (0.2298, 0.1779, 0.2875). (c) π = (0.0450, 0.2195, 0.7355).
(d) The long-run expected premium is $9,062,578.

9. Given that an individual has a (first) loss, the chances a claim will
be made are, respectively, (0.7985, 0.6977, 0.8353, 0.8353) for those in
discount levels E0%, E20%, E40% and E50%.

11. Thresholds for making claims are E0 → 160, E20 → 240, E40 → 80 and
the limiting distribution is π = (0.0068475, 0.0860274, 0.9071251).

13. (a) The thresholds for making claims are (250, 350, 100), with corre-
sponding probabilities of making a claim (0.1136094, 0.0853332, 0.192),
for the different discount levels. (b) The limiting distribution is found
to be π = (0.0164279, 0.1706438, 0.8129282), and in the limit, expected
numbers in the respective levels are given by (329, 3413, 16, 258).
(c) Expected premiums for next year would be in the region of $7,340,828,
and in the long run they would be about $5,423,427.

15. (a) Threshold values for the discount classes are, respectively, 300, 420
and 120.
(b) First claim incidence rates are (0.2440776, 0.2308395, 0.2499405).
(c) The expected number getting full discount next year is 3932.
(d) The total expected premium is $4,027,781.

17. E(CN ) = 0.1647114.

D.7 Generalized linear models

1. (a) 57.7%, (b) age ≤ 19.22, (c) a maximum of 84.7% for a 17-year-old
Dublin student on 640 points, and a minimum of 51.2% for a 20-year-old
student from outside Ireland.
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3. Consider yi as being fixed and we show that the function g(x) given by

g(x) = [yi (log yi − log x)− (yi − x)]

is nonnegative. Now g has only one critical point at x = yi since g′(x) =
(−yi/x) + 1. Since g′′ > 0, this is a minimum for g and g(yi) = 0.

5. The predicted probability of success for an equity-based fund with a
$2 million promotional budget would be p̂ = 0.53644. A budget level of
x = 32.96078 (in $ million) would make the property and bond products
equally likely to be successful.

7. (a) 0.16696, (b) 0.68386 at age 20.

9. XT y = (1127.2, 117,648.6, 13,133,185.7), and σ̂2 = 9.686355. A signif-
icant change seems to have occurred in year 20 (see Figure D.1), and
this should be taken into account in modeling the future.

12.

l(θ) = A
2 y θ/2− γ(2 θ/2)

φ
+ τ(y, φ/A)

= A∗
y θ∗ − γ∗(θ∗)

φ
+ τ∗(y, φ/A∗).

13. Y can be expressed in exponential form where θ = log(1−p), A = φ = 1,
γ(θ) = −k log(1− eθ), and τ(y, φ) = log

(
y+k−1

k−1

)
.

15. Figure D.2 gives a plot of the predicted accident rates for companies A
and B.

D.8 Decision and game theory

1. (a) is not really a game, while one could argue that (b), (c) and (d) are.
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FIGURE D.1
Automobile deaths and vehicle registrations.
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FIGURE D.2
Predicted accident rates for manufacturing companies A and B using a Poisson
model.
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3. The thief should visit warehouse 1 with probability 0.2, and the value of
the game is 20. The optimal strategy for the security agent is to guard
the more valuable warehouse (W1) 80% of the time.

5. There are two saddle points here and the game has a value of 5.

7. If X = 7 and Y = 1, then the value of the game is 7. When X = 9
and Y = 6, the optimal strategy for Ann is to play II with probability
p = 2/9 and III otherwise, resulting in a game with value 74/9.

9. The optimal strategy for Richie is to pick I and IV with equal probability
1/2. Mort would choose strategy 2 with probability 1/4 and 3 otherwise.
The value of the game is 3.

11. (Rugby,Rugby) and (Football, Football) are both points of Nash equi-
librium.

13. Decision function d1 (where d1(0) = 0 and d1(1) = 1) has the minimum
Bayes risk of 1/3.

15. Both the minimax (risk) and the Bayes decision rules are d2, and the
Bayes risk using d2 is 7/16.

17. The probability a triangle can be formed is 1/4. The Bayes risk associ-
ated with taking action Yes is 3/4 while that for action No is 2/4, and
hence the optimal Bayes decision is to say No.

19. The risk function for d1 takes the values (4/81, 5/48, 13/81) while that
for d2 is (7/81, 1/6, 7/81). Hence d1 is both the minimax and Bayes
decision function.

21. P1 = 138.63, P2 = 115.07 and P1+2 = 253.70. P1 + P2 = P1+2 because
X1 and X2 are independent.




	Front cover
	Dedication
	Preface
	Introduction
	Contents
	Chapter 1. Claims Reserving and Pricing with Run-Off Triangles
	Chapter 2. Loss Distributions
	Chapter 3. Risk Theory
	Chapter 4. Ruin Theory
	Chapter 5. Credibility Theory
	Chapter 6. No Claim Discounting in Motor Insurance
	Chapter 7. Generalized Linear Models
	Chapter 8. Decision and Game Theory
	References
	Appendix A. Basic Probability Distributions
	Appendix B. Some Basic Tools in Probability and Statistics
	Appendix C. An Introduction to Bayesian Statistics
	Appendix D. Answers to Selected Problems
	Back cover

